1. Developmental Biology
Download icon

Adrb2 controls glucose homeostasis by developmental regulation of pancreatic islet vasculature

  1. Alexis M Ceasrine
  2. Eugene E Lin
  3. David N Lumelsky
  4. Radhika Iyer
  5. Rejji Kuruvilla  Is a corresponding author
  1. Johns Hopkins University, United States
Research Article
  • Cited 0
  • Views 476
  • Annotations
Cite this article as: eLife 2018;7:e39689 doi: 10.7554/eLife.39689

Abstract

A better understanding of processes controlling the development and function of pancreatic islets is critical for diabetes prevention and treatment. Here, we reveal a previously unappreciated function for pancreatic β2-adrenergic receptors (Adrb2) in controlling glucose homeostasis by restricting islet vascular growth during development. Pancreas-specific deletion of Adrb2 results in glucose intolerance and impaired insulin secretion in mice, and unexpectedly, specifically in females. The metabolic phenotypes were recapitulated by Adrb2 deletion from neonatal, but not adult, b-cells. Mechanistically, Adrb2 loss increases production of Vascular Endothelial Growth Factor-A (VEGF-A) in female neonatal b-cells and results in hyper-vascularized islets during development, which in turn, disrupts insulin production and exocytosis. Neonatal correction of islet hyper-vascularization, via VEGF-A receptor blockade, fully rescues functional deficits in glucose homeostasis in adult mutant mice. These findings uncover a regulatory pathway that functions in a sex-specific manner to control glucose metabolism by restraining excessive vascular growth during islet development.

Article and author information

Author details

  1. Alexis M Ceasrine

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Eugene E Lin

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David N Lumelsky

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Radhika Iyer

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rejji Kuruvilla

    Department of Biology, Johns Hopkins University, Baltimore, United States
    For correspondence
    rkuruvilla@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2851-675X

Funding

National Institutes of Health (R01DK108267)

  • Rejji Kuruvilla

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures relating to animal care and treatment conformed to The Johns Hopkins University Animal Care and Use Committee (ACUC) and NIH guidelines. All of the animals were handled according to approved institutional ACUC protocols (#MO17A14) of Johns Hopkins University

Reviewing Editor

  1. Lori Sussel, University of Colorado Denver, United States

Publication history

  1. Received: June 28, 2018
  2. Accepted: October 7, 2018
  3. Accepted Manuscript published: October 10, 2018 (version 1)

Copyright

© 2018, Ceasrine et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 476
    Page views
  • 59
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Alexander Munden et al.
    Research Article Updated
    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Anna Yoney et al.
    Research Article