Plasmodium-specific atypical memory B cells are short-lived activated B cells

  1. Damian Pérez-Mazliah
  2. Peter J Gardner
  3. Edina Schweighoffer
  4. Sarah McLaughlin
  5. Caroline Hosking
  6. Irene Tumwine
  7. Randall S Davis
  8. Alexandre J Potocnik
  9. Victor LJ Tybulewicz
  10. Jean Langhorne  Is a corresponding author
  1. The Francis Crick Institute, United Kingdom
  2. MRC National Institute for Medical Research, United Kingdom
  3. University of Alabama at Birmingham, United States
  4. University of Edinburgh, United Kingdom

Abstract

A subset of atypical memory B cells accumulates in malaria and several infections, autoimmune disorders and aging in both humans and mice. It has been suggested these cells are exhausted long-lived memory B cells, and their accumulation may contribute to poor acquisition of long-lasting immunity to certain chronic infections, such as malaria and HIV. Here, we generated an immunoglobulin heavy chain knock-in mouse with a BCR that recognizes MSP1 of the rodent malaria parasite, Plasmodium chabaudi. In combination with a mosquito-initiated P. chabaudi infection, we show that Plasmodium-specific atypical memory B cells are short-lived and disappear upon natural resolution of chronic infection. These cells show features of activation, proliferation, DNA replication, and plasmablasts. Our data demonstrate that Plasmodium-specific atypical memory B cells are not a subset of long-lived memory B cells, but rather short-lived activated cells, and part of a physiologic ongoing B-cell response.

Data availability

RNAseq transcriptome data have been deposited in GEO under accession code GSE115155.

The following data sets were generated

Article and author information

Author details

  1. Damian Pérez-Mazliah

    Malaria Research Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2156-2585
  2. Peter J Gardner

    Parasitology, Immune Cell Biology, MRC National Institute for Medical Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4940-2639
  3. Edina Schweighoffer

    Immune Cell Biology, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Sarah McLaughlin

    Malaria Research Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Caroline Hosking

    Malaria Research Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Irene Tumwine

    Malaria Research Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Randall S Davis

    Department of Medicine, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1906-8219
  8. Alexandre J Potocnik

    School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Victor LJ Tybulewicz

    Immune Cell Biology, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2439-0798
  10. Jean Langhorne

    Malaria Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
    For correspondence
    Jean.Langhorne@crick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2257-9733

Funding

Medical Research Council (FC001101)

  • Jean Langhorne

Wellcome (FC001101)

  • Jean Langhorne

Cancer Research UK (FC001101)

  • Jean Langhorne

National Institutes of Health (AI110553)

  • Randall S Davis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The study was carried out in accordance with the UK Animals (Scientific Procedures) Act 1986, Home Office license 80/2538 and 70/8326. Was approved by the MRC National Institute for Medical Research Ethical Committee, The Francis Crick Institute Ethical Committee, and further approved by the Home Office of the UK upon granting of the HO license.

Copyright

© 2018, Pérez-Mazliah et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,897
    views
  • 592
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Damian Pérez-Mazliah
  2. Peter J Gardner
  3. Edina Schweighoffer
  4. Sarah McLaughlin
  5. Caroline Hosking
  6. Irene Tumwine
  7. Randall S Davis
  8. Alexandre J Potocnik
  9. Victor LJ Tybulewicz
  10. Jean Langhorne
(2018)
Plasmodium-specific atypical memory B cells are short-lived activated B cells
eLife 7:e39800.
https://doi.org/10.7554/eLife.39800

Share this article

https://doi.org/10.7554/eLife.39800

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Gregory T Walker, Araceli Perez-Lopez ... Manuela Raffatellu
    Research Article Updated

    The chemokine CCL28 is highly expressed in mucosal tissues, but its role during infection is not well understood. Here, we show that CCL28 promotes neutrophil accumulation in the gut of mice infected with Salmonella and in the lung of mice infected with Acinetobacter. Neutrophils isolated from the infected mucosa expressed the CCL28 receptors CCR3 and, to a lesser extent, CCR10, on their surface. The functional consequences of CCL28 deficiency varied between the two infections: Ccl28−/− mice were highly susceptible to Salmonella gut infection but highly resistant to otherwise lethal Acinetobacter lung infection. In vitro, unstimulated neutrophils harbored pre-formed intracellular CCR3 that was rapidly mobilized to the cell surface following phagocytosis or inflammatory stimuli. Moreover, CCL28 stimulation enhanced neutrophil antimicrobial activity, production of reactive oxygen species, and formation of extracellular traps, all processes largely dependent on CCR3. Consistent with the different outcomes in the two infection models, neutrophil stimulation with CCL28 boosted the killing of Salmonella but not Acinetobacter. CCL28 thus plays a critical role in the immune response to mucosal pathogens by increasing neutrophil accumulation and activation, which can enhance pathogen clearance but also exacerbate disease depending on the mucosal site and the infectious agent.

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Shang Geng, Xing Lv ... Tianjun Xu
    Research Article

    The incessant arms race between viruses and hosts has led to numerous evolutionary innovations that shape life’s evolution. During this process, the interactions between viral receptors and viruses have garnered significant interest since viral receptors are cell surface proteins exploited by viruses to initiate infection. Our study sheds light on the arms race between the MDA5 receptor and 5’ppp-RNA virus in a lower vertebrate fish, Miichthys miiuy. Firstly, the frequent and independent loss events of RIG-I in vertebrates prompted us to search for alternative immune substitutes, with homology-dependent genetic compensation response (HDGCR) being the main pathway. Our further analysis suggested that MDA5 of M. miiuy and Gallus gallus, the homolog of RIG-I, can replace RIG-I in recognizing 5’ppp-RNA virus, which may lead to redundancy of RIG-I and loss from the species genome during evolution. Secondly, as an adversarial strategy, 5’ppp-RNA SCRV can utilize the m6A methylation mechanism to degrade MDA5 and weaken its antiviral immune ability, thus promoting its own replication and immune evasion. In summary, our study provides a snapshot into the interaction and coevolution between vertebrate and virus, offering valuable perspectives on the ecological and evolutionary factors that contribute to the diversity of the immune system.