1. Biochemistry and Chemical Biology
  2. Immunology and Inflammation
Download icon

The allosteric activation of cGAS underpins its dynamic signaling landscape

  1. Richard M Hooy
  2. Jungsan Sohn  Is a corresponding author
  1. Johns Hopkins University School of Medicine, United States
Research Article
  • Cited 21
  • Views 2,929
  • Annotations
Cite this article as: eLife 2018;7:e39984 doi: 10.7554/eLife.39984


Cyclic G/AMP synthase (cGAS) initiates type-1 interferon responses against cytosolic double-stranded (ds)DNA, which range from antiviral gene expression to apoptosis. The mechanism by which cGAS shapes this diverse signaling landscape remains poorly defined. We find that substrate-binding and dsDNA length-dependent binding are coupled to the intrinsic dimerization equilibrium of cGAS, with its N-terminal domain potentiating dimerization. Notably, increasing the dimeric fraction by raising cGAS and substrate concentrations diminishes duplex length-dependent activation, but does not negate the requirement for dsDNA. These results demonstrate that reaction context dictates the duplex length dependence, reconciling competing claims on the role of dsDNA length in cGAS activation. Overall, our study reveals how ligand-mediated allostery positions cGAS in standby, ready to tune its signaling pathway in a switch-like fashion.

Article and author information

Author details

  1. Richard M Hooy

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jungsan Sohn

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9570-2544


American Cancer Society (DMC-RG-15-224)

  • Jungsan Sohn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yamuna Krishnan, University of Chicago, United States

Publication history

  1. Received: July 11, 2018
  2. Accepted: October 5, 2018
  3. Accepted Manuscript published: October 8, 2018 (version 1)
  4. Version of Record published: November 1, 2018 (version 2)


© 2018, Hooy & Sohn

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 2,929
    Page views
  • 578
  • 21

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Zachary F Mandell et al.
    Research Article

    NusA and NusG are transcription factors that stimulate RNA polymerase pausing in Bacillus subtilis. While NusA was known to function as an intrinsic termination factor in B. subtilis, the role of NusG in this process was unknown. To examine the individual and combinatorial roles that NusA and NusG play in intrinsic termination, Term-seq was conducted in wild type, NusA depletion, DnusG, and NusA depletion DnusG strains. We determined that NusG functions as an intrinsic termination factor that works alone and cooperatively with NusA to facilitate termination at 88% of the 1400 identified intrinsic terminators. Our results indicate that NusG stimulates a sequence-specific pause that assists in the completion of suboptimal terminator hairpins with weak terminal A-U and G-U base pairs at the bottom of the stem. Loss of NusA and NusG leads to global misregulation of gene expression and loss of NusG results in flagella and swimming motility defects.

    1. Biochemistry and Chemical Biology
    Vidyasiri Vemulapalli et al.
    Research Article Updated

    SHP2 is a protein tyrosine phosphatase that normally potentiates intracellular signaling by growth factors, antigen receptors, and some cytokines, yet is frequently mutated in human cancer. Here, we examine the role of SHP2 in the responses of breast cancer cells to EGF by monitoring phosphoproteome dynamics when SHP2 is allosterically inhibited by SHP099. The dynamics of phosphotyrosine abundance at more than 400 tyrosine residues reveal six distinct response signatures following SHP099 treatment and washout. Remarkably, in addition to newly identified substrate sites on proteins such as occludin, ARHGAP35, and PLCγ2, another class of sites shows reduced phosphotyrosine abundance upon SHP2 inhibition. Sites of decreased phospho-abundance are enriched on proteins with two nearby phosphotyrosine residues, which can be directly protected from dephosphorylation by the paired SH2 domains of SHP2 itself. These findings highlight the distinct roles of the scaffolding and catalytic activities of SHP2 in effecting a transmembrane signaling response.