The RNA interactome of human telomerase RNA reveals a coding-independent role for a histone mRNA in telomere homeostasis

  1. Roland Ivanyi-Nagy  Is a corresponding author
  2. Syed Moiz Ahmed
  3. Sabrina Peter
  4. Priya Dharshana Ramani
  5. Peh Fern Ong
  6. Oliver Dreesen
  7. Peter Dröge  Is a corresponding author
  1. Nanyang Technological University, Singapore
  2. Skin Research Institute Singapore, Singapore

Abstract

Telomerase RNA (TR) provides the template for DNA repeat synthesis at telomeres and is essential for genome stability in continuously dividing cells. We mapped the RNA interactome of human TR (hTR) and identified a set of non-coding and coding hTR-interacting RNAs, including the histone 1C mRNA (HIST1H1C). Disruption of the hTR-HIST1H1C RNA association resulted in markedly increased telomere elongation without affecting telomerase enzymatic activity. Conversely, over-expression of HIST1H1C led to telomere attrition. By using a combination of mutations to disentangle the effects of histone 1 RNA synthesis, protein expression, and hTR interaction, we show that HIST1H1C RNA negatively regulates telomere length independently of its protein coding potential. Taken together, our data provide important insights into a surprisingly complex hTR-RNA interaction network and define an unexpected non-coding RNA role for HIST1H1C in regulating telomere length homeostasis, thus offering a glimpse into the mostly uncharted, vast space of non-canonical messenger RNA functions.

Data availability

Sequencing data have been deposited in the NCBI Sequence Read Archive (SRA) under the accession code SRP123633.

The following data sets were generated

Article and author information

Author details

  1. Roland Ivanyi-Nagy

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    For correspondence
    roland.ivanyi-nagy@ntu.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
  2. Syed Moiz Ahmed

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Sabrina Peter

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Priya Dharshana Ramani

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Peh Fern Ong

    Cell Ageing, Skin Research Institute Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Oliver Dreesen

    Cell Ageing, Skin Research Institute Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1148-3557
  7. Peter Dröge

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    For correspondence
    pdroge@ntu.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5447-738X

Funding

Ministry of Education - Singapore (MOE2012-T3-1-001)

  • Peter Dröge

Singapore Biomedical Research Council

  • Oliver Dreesen

Agency for Science, Technology and Research

  • Oliver Dreesen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Raymund Wellinger, Université de Sherbrooke, Canada

Publication history

  1. Received: July 12, 2018
  2. Accepted: October 24, 2018
  3. Accepted Manuscript published: October 25, 2018 (version 1)
  4. Version of Record published: November 21, 2018 (version 2)

Copyright

© 2018, Ivanyi-Nagy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,267
    Page views
  • 474
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Roland Ivanyi-Nagy
  2. Syed Moiz Ahmed
  3. Sabrina Peter
  4. Priya Dharshana Ramani
  5. Peh Fern Ong
  6. Oliver Dreesen
  7. Peter Dröge
(2018)
The RNA interactome of human telomerase RNA reveals a coding-independent role for a histone mRNA in telomere homeostasis
eLife 7:e40037.
https://doi.org/10.7554/eLife.40037

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Kanishk Jain, Matthew R Marunde ... Brian D Strahl
    Short Report Updated

    In nucleosomes, histone N-terminal tails exist in dynamic equilibrium between free/accessible and collapsed/DNA-bound states. The latter state is expected to impact histone N-termini availability to the epigenetic machinery. Notably, H3 tail acetylation (e.g. K9ac, K14ac, K18ac) is linked to increased H3K4me3 engagement by the BPTF PHD finger, but it is unknown if this mechanism has a broader extension. Here, we show that H3 tail acetylation promotes nucleosomal accessibility to other H3K4 methyl readers, and importantly, extends to H3K4 writers, notably methyltransferase MLL1. This regulation is not observed on peptide substrates yet occurs on the cis H3 tail, as determined with fully-defined heterotypic nucleosomes. In vivo, H3 tail acetylation is directly and dynamically coupled with cis H3K4 methylation levels. Together, these observations reveal an acetylation ‘chromatin switch’ on the H3 tail that modulates read-write accessibility in nucleosomes and resolves the long-standing question of why H3K4me3 levels are coupled with H3 acetylation.

    1. Chromosomes and Gene Expression
    Dylan C Sarver, Cheng Xu ... G William Wong
    Research Article

    The consequences of aneuploidy have traditionally been studied in cell and animal models in which the extrachromosomal DNA is from the same species. Here, we explore a fundamental question concerning the impact of aneuploidy on systemic metabolism using a non-mosaic transchromosomic mouse model (TcMAC21) carrying a near-complete human chromosome 21. Independent of diets and housing temperatures, TcMAC21 mice consume more calories, are hyperactive and hypermetabolic, remain consistently lean and profoundly insulin sensitive, and have a higher body temperature. The hypermetabolism and elevated thermogenesis are likely due to a combination of increased activity level and sarcolipin overexpression in the skeletal muscle, resulting in futile sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) activity and energy dissipation. Mitochondrial respiration is also markedly increased in skeletal muscle to meet the high ATP demand created by the futile cycle and hyperactivity. This serendipitous discovery provides proof-of-concept that sarcolipin-mediated thermogenesis via uncoupling of the SERCA pump can be harnessed to promote energy expenditure and metabolic health.