A Phytophthora effector recruits a host cytoplasmic transacetylase into nuclear speckles to enhance plant susceptibility

Abstract

Oomycete pathogens secrete host cell-entering effector proteins to manipulate host immunity during infection. We previously showed that PsAvh52, an early-induced RxLR effector secreted from the soybean root rot pathogen, Phytophthora sojae, could suppress plant immunity. Here, we found that PsAvh52 is required for full virulence on soybean and binds to a novel soybean transacetylase, GmTAP1, in vivo and in vitro. PsAvh52 could cause GmTAP1 to relocate into the nucleus where GmTAP1 could acetylate histones H2A and H3 during early infection, thereby promoting susceptibility to P. sojae. In the absence of PsAvh52, GmTAP1 remained confined to the cytoplasm and did not modify plant susceptibility. These results demonstrate that GmTAP1 is a susceptibility factor that is hijacked by PsAvh52 in order to promote epigenetic modifications that enhance the susceptibility of soybean to P. sojae infection.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Haiyang Li

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8205-4875
  2. Haonan Wang

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Maofeng Jing

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jinyi Zhu

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Baodian Guo

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yang Wang

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yachun Lin

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Han Chen

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Liang Kong

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Zhenchuan Ma

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Yan Wang

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7465-5518
  12. Wenwu Ye

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Suomeng Dong

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Brett M Tyler

    Center for Genome Research and Biocomputing, Oregon State University, Corvallis, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Yuanchao Wang

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    For correspondence
    wangyc@njau.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5803-5343

Funding

Creative Research Groups of the National Natural Science Foundation of China (31721004)

  • Yuanchao Wang

The Special Fund for Agro-scientific Research in the Public Interest (201303018)

  • Yuanchao Wang

The China Agriculture Research System (CARS-004-PS14)

  • Yuanchao Wang

The Key Programme of the National Natural Science Foundation of China (31430073)

  • Yuanchao Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,472
    views
  • 1,044
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haiyang Li
  2. Haonan Wang
  3. Maofeng Jing
  4. Jinyi Zhu
  5. Baodian Guo
  6. Yang Wang
  7. Yachun Lin
  8. Han Chen
  9. Liang Kong
  10. Zhenchuan Ma
  11. Yan Wang
  12. Wenwu Ye
  13. Suomeng Dong
  14. Brett M Tyler
  15. Yuanchao Wang
(2018)
A Phytophthora effector recruits a host cytoplasmic transacetylase into nuclear speckles to enhance plant susceptibility
eLife 7:e40039.
https://doi.org/10.7554/eLife.40039

Share this article

https://doi.org/10.7554/eLife.40039