A Phytophthora effector recruits a host cytoplasmic transacetylase into nuclear speckles to enhance plant susceptibility

Abstract

Oomycete pathogens secrete host cell-entering effector proteins to manipulate host immunity during infection. We previously showed that PsAvh52, an early-induced RxLR effector secreted from the soybean root rot pathogen, Phytophthora sojae, could suppress plant immunity. Here, we found that PsAvh52 is required for full virulence on soybean and binds to a novel soybean transacetylase, GmTAP1, in vivo and in vitro. PsAvh52 could cause GmTAP1 to relocate into the nucleus where GmTAP1 could acetylate histones H2A and H3 during early infection, thereby promoting susceptibility to P. sojae. In the absence of PsAvh52, GmTAP1 remained confined to the cytoplasm and did not modify plant susceptibility. These results demonstrate that GmTAP1 is a susceptibility factor that is hijacked by PsAvh52 in order to promote epigenetic modifications that enhance the susceptibility of soybean to P. sojae infection.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Haiyang Li

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8205-4875
  2. Haonan Wang

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Maofeng Jing

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jinyi Zhu

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Baodian Guo

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yang Wang

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yachun Lin

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Han Chen

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Liang Kong

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Zhenchuan Ma

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Yan Wang

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7465-5518
  12. Wenwu Ye

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Suomeng Dong

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Brett M Tyler

    Center for Genome Research and Biocomputing, Oregon State University, Corvallis, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Yuanchao Wang

    Department of Plant Pathology, Nanjing Agriculture University, Nanjing, China
    For correspondence
    wangyc@njau.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5803-5343

Funding

Creative Research Groups of the National Natural Science Foundation of China (31721004)

  • Yuanchao Wang

The Special Fund for Agro-scientific Research in the Public Interest (201303018)

  • Yuanchao Wang

The China Agriculture Research System (CARS-004-PS14)

  • Yuanchao Wang

The Key Programme of the National Natural Science Foundation of China (31430073)

  • Yuanchao Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,416
    views
  • 1,034
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haiyang Li
  2. Haonan Wang
  3. Maofeng Jing
  4. Jinyi Zhu
  5. Baodian Guo
  6. Yang Wang
  7. Yachun Lin
  8. Han Chen
  9. Liang Kong
  10. Zhenchuan Ma
  11. Yan Wang
  12. Wenwu Ye
  13. Suomeng Dong
  14. Brett M Tyler
  15. Yuanchao Wang
(2018)
A Phytophthora effector recruits a host cytoplasmic transacetylase into nuclear speckles to enhance plant susceptibility
eLife 7:e40039.
https://doi.org/10.7554/eLife.40039

Share this article

https://doi.org/10.7554/eLife.40039

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Axelle Amen, Randy Yoo ... Matthijs M Jore
    Research Article

    Circulating sexual stages of Plasmodium falciparum (Pf) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies can efficiently block parasite transmission. In search for naturally acquired antibodies targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of Pf in the form of gametes and gametocyte extracts. We isolated mAbs reactive against a range of Pf proteins including well-established targets Pfs48/45 and Pfs230. One mAb, B1E11K, was cross-reactive to various proteins containing glutamate-rich repetitive elements expressed at different stages of the parasite life cycle. A crystal structure of two B1E11K Fab domains in complex with its main antigen, RESA, expressed on asexual blood stages, showed binding of B1E11K to a repeating epitope motif in a head-to-head conformation engaging in affinity-matured homotypic interactions. Thus, this mode of recognition of Pf proteins, previously described only for Pf circumsporozoite protein (PfCSP), extends to other repeats expressed across various stages. The findings augment our understanding of immune-pathogen interactions to repeating elements of the Plasmodium parasite proteome and underscore the potential of the novel mAb identification method used to provide new insights into the natural humoral immune response against Pf.

    1. Microbiology and Infectious Disease
    Nicolas Flaugnatti, Loriane Bader ... Melanie Blokesch
    Research Article Updated

    The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS. In this study, we examined how the capsular polysaccharide (CPS) of Acinetobacter baumannii affects T6SS’s antibacterial function. Our findings show that the CPS confers resistance against T6SS-mediated assaults from rival bacteria. Notably, under typical growth conditions, the presence of the surface-bound capsule also reduces the efficacy of the bacterium’s own T6SS. This T6SS impairment is further enhanced when CPS is overproduced due to genetic modifications or antibiotic treatment. Furthermore, we demonstrate that the bacterium adjusts the level of the T6SS inner tube protein Hcp according to its secretion capacity, by initiating a degradation process involving the ClpXP protease. Collectively, our findings contribute to a better understanding of the dynamic relationship between T6SS and CPS and how they respond swiftly to environmental challenges.