1. Cell Biology
Download icon

Dynein-mediated transport and membrane trafficking control PAR3 polarised distribution

  1. Julie Jouette
  2. Antoine Guichet  Is a corresponding author
  3. Sandra B Claret  Is a corresponding author
  1. Institut Jacques Monod, CNRS, UMR 7592, Paris Diderot University, France
Research Article
  • Cited 6
  • Views 1,554
  • Annotations
Cite this article as: eLife 2019;8:e40212 doi: 10.7554/eLife.40212

Abstract

The scaffold protein PAR3 and the kinase PAR1 are essential proteins that control cell polarity. Their precise opposite localisations define plasma membrane domains with specific functions. PAR3 and PAR1 are mutually inhibited by direct or indirect phosphorylations, but their fates once phosphorylated are poorly known. Through precise spatiotemporal quantification of PAR3 localisation in the Drosophila oocyte, we identify several mechanisms responsible for its anterior cortex accumulation and its posterior exclusion. We show that PAR3 posterior plasma membrane exclusion depends on PAR1 and an endocytic mechanisms relying on RAB5 and PI(4,5)P2. In a second phase, microtubules and the dynein motor, in connection with vesicular trafficking involving RAB11 and IKK-related kinase, IKKε, are required for PAR3 transport towards the anterior cortex. Altogether our results point to a connection between membrane trafficking and dynein-mediated transport to sustain PAR3 asymmetry.

Article and author information

Author details

  1. Julie Jouette

    Polarity and Morphogenesis Lab, Institut Jacques Monod, CNRS, UMR 7592, Paris Diderot University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Antoine Guichet

    Polarity and Morphogenesis Lab, Institut Jacques Monod, CNRS, UMR 7592, Paris Diderot University, Paris, France
    For correspondence
    antoine.guichet@ijm.fr
    Competing interests
    The authors declare that no competing interests exist.
  3. Sandra B Claret

    Polarity and Morphogenesis Lab, Institut Jacques Monod, CNRS, UMR 7592, Paris Diderot University, Paris, France
    For correspondence
    sandra.claret@ijm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7167-510X

Funding

Fondation ARC pour la Recherche sur le Cancer (SLR20130607102)

  • Antoine Guichet

Ligue Contre le Cancer (RS14/75-58)

  • Antoine Guichet

Fondation ARC pour la Recherche sur le Cancer (PJA 20141201756)

  • Antoine Guichet

Fondation ARC pour la Recherche sur le Cancer (PJA 20161204931)

  • Antoine Guichet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Matthew Freeman, University of Oxford, United Kingdom

Publication history

  1. Received: July 19, 2018
  2. Accepted: January 3, 2019
  3. Accepted Manuscript published: January 23, 2019 (version 1)
  4. Version of Record published: February 1, 2019 (version 2)
  5. Version of Record updated: February 1, 2019 (version 3)

Copyright

© 2019, Jouette et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,554
    Page views
  • 316
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    Mihaela Jagrić et al.
    Research Article

    During metaphase, chromosome position at the spindle equator is regulated by the forces exerted by kinetochore microtubules and polar ejection forces. However, the role of forces arising from mechanical coupling of sister kinetochore fibers with bridging fibers in chromosome alignment is unknown. Here we develop an optogenetic approach for acute removal of PRC1 to partially disassemble bridging fibers and show that they promote chromosome alignment. Tracking of the plus-end protein EB3 revealed longer antiparallel overlaps of bridging microtubules upon PRC1 removal, which was accompanied by misaligned and lagging kinetochores. Kif4A/kinesin-4 and Kif18A/kinesin-8 were found within the bridging fiber and largely lost upon PRC1 removal, suggesting that these proteins regulate the overlap length of bridging microtubules. We propose that PRC1-mediated crosslinking of bridging microtubules and recruitment of kinesins to the bridging fiber promotes chromosome alignment by overlap length-dependent forces transmitted to the associated kinetochore fibers.

    1. Cell Biology
    Xiaoxue Zhou et al.
    Research Article

    In budding yeast, the mitotic exit network (MEN), a GTPase signaling cascade, integrates spatial and temporal cues to promote exit from mitosis. This signal integration requires transmission of a signal generated on the cytoplasmic face of spindle pole bodies (SPBs; yeast equivalent of centrosomes) to the nucleolus, where the MEN effector protein Cdc14 resides. Here, we show that the MEN activating signal at SPBs is relayed to Cdc14 in the nucleolus through the dynamic localization of its terminal kinase complex Dbf2-Mob1. Cdc15, the protein kinase that activates Dbf2-Mob1 at SPBs, also regulates its nuclear access. Once in the nucleus, priming phosphorylation of Cfi1/Net1, the nucleolar anchor of Cdc14, by the Polo-like kinase Cdc5 targets Dbf2-Mob1 to the nucleolus. Nucleolar Dbf2-Mob1 then phosphorylates Cfi1/Net1 and Cdc14, activating Cdc14. The kinase-primed transmission of the MEN signal from the cytoplasm to the nucleolus exemplifies how signaling cascades can bridge distant inputs and responses.