Impact of seasonal variations in Plasmodium falciparum malaria transmission on the surveillance of pfhrp2 gene deletions

  1. Oliver John Watson  Is a corresponding author
  2. Robert Verity
  3. Azra C Ghani
  4. Tini Garske
  5. Jane Cunningham
  6. Antoinette Tshefu
  7. Melchior K Mwandagalirwa
  8. Steven R Meshnick
  9. Jonathan B Parr
  10. Hannah C Slater
  1. Imperial College London, United Kingdom
  2. World Health Organisation, Switzerland
  3. University of Kinshasa, Democratic Republic of the Congo
  4. University of North Carolina, United States

Abstract

Ten countries have reported pfhrp2/pfhrp3 gene deletions since the first observation of pfhrp2-deleted parasites in 2012. In a previous study (Watson et al., 2017) we characterised the drivers selecting for pfhrp2/3 deletions, and mapped the regions in Africa with the greatest selection pressure. In February 2018, the World Health Organization issued guidance on investigating suspected false-negative rapid diagnostic tests (RDTs) due to pfhrp2/3 deletions. However, no guidance is provided regarding the timing of investigations. Failure to consider seasonal variation could cause premature decisions to switch to alternative RDTs. In response, we have extended our methods and predict that the prevalence of false-negative RDTs due to pfhrp2/3 deletions is highest when sampling from younger individuals during the beginning of the rainy season. We conclude by producing a map of the regions impacted by seasonal fluctuations in pfhrp2/3 deletions and a database identifying optimum sampling intervals to support malaria control programmes.

Data availability

All data generated are provided within the online database, hosted through a shiny application at https://ojwatson.shinyapps.io/seasonal_hrp2/. The raw data for the application is available within the github repository at https://github.com/OJWatson/hrp2malaRia.

The following previously published data sets were used

Article and author information

Author details

  1. Oliver John Watson

    MRC Center for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    For correspondence
    o.watson15@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2374-0741
  2. Robert Verity

    MRC Center for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Azra C Ghani

    MRC Center for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Tini Garske

    MRC Center for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Jane Cunningham

    Global Malaria Programme, World Health Organisation, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Antoinette Tshefu

    School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
    Competing interests
    The authors declare that no competing interests exist.
  7. Melchior K Mwandagalirwa

    School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
    Competing interests
    The authors declare that no competing interests exist.
  8. Steven R Meshnick

    4.Department of Epidemiology, Gillings School for Global Public Health, University of North Carolina, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jonathan B Parr

    Division of Infectious Diseases, University of North Carolina, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Hannah C Slater

    1.MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Wellcome (109312/Z/15/Z)

  • Oliver John Watson

Medical Research Council (MR/N01507X/1)

  • Robert Verity

Department for International Development

  • Azra C Ghani

Medical Research Council

  • Tini Garske

National Institute of Allergy and Infectious Diseases (R01AI132547)

  • Steven R Meshnick
  • Jonathan B Parr

American Society for Tropical Medicine and Hygiene-Burroughs Wellcome Fund

  • Jonathan B Parr

Imperial College London

  • Hannah C Slater

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Watson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,155
    views
  • 220
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Oliver John Watson
  2. Robert Verity
  3. Azra C Ghani
  4. Tini Garske
  5. Jane Cunningham
  6. Antoinette Tshefu
  7. Melchior K Mwandagalirwa
  8. Steven R Meshnick
  9. Jonathan B Parr
  10. Hannah C Slater
(2019)
Impact of seasonal variations in Plasmodium falciparum malaria transmission on the surveillance of pfhrp2 gene deletions
eLife 8:e40339.
https://doi.org/10.7554/eLife.40339

Share this article

https://doi.org/10.7554/eLife.40339

Further reading

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Tianyu Zhao, Hui Li ... Li Chen
    Research Article

    Alzheimer’s disease (AD) is a complex degenerative disease of the central nervous system, and elucidating its pathogenesis remains challenging. In this study, we used the inverse-variance weighted (IVW) model as the major analysis method to perform hypothesis-free Mendelian randomization (MR) analysis on the data from MRC IEU OpenGWAS (18,097 exposure traits and 16 AD outcome traits), and conducted sensitivity analysis with six models, to assess the robustness of the IVW results, to identify various classes of risk or protective factors for AD, early-onset AD, and late-onset AD. We generated 400,274 data entries in total, among which the major analysis method of the IVW model consists of 73,129 records with 4840 exposure traits, which fall into 10 categories: Disease, Medical laboratory science, Imaging, Anthropometric, Treatment, Molecular trait, Gut microbiota, Past history, Family history, and Lifestyle trait. More importantly, a freely accessed online platform called MRAD (https://gwasmrad.com/mrad/) has been developed using the Shiny package with MR analysis results. Additionally, novel potential AD therapeutic targets (CD33, TBCA, VPS29, GNAI3, PSME1) are identified, among which CD33 was positively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. TBCA and VPS29 were negatively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. GNAI3 and PSME1 were negatively associated with the main outcome traits of AD, as well as with LOAD, but had no significant causal association with EOAD. The findings of our research advance our understanding of the etiology of AD.

    1. Epidemiology and Global Health
    Xiaoning Wang, Jinxiang Zhao ... Dong Liu
    Research Article

    Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms.