Impact of seasonal variations in Plasmodium falciparum malaria transmission on the surveillance of pfhrp2 gene deletions

  1. Oliver John Watson  Is a corresponding author
  2. Robert Verity
  3. Azra C Ghani
  4. Tini Garske
  5. Jane Cunningham
  6. Antoinette Tshefu
  7. Melchior K Mwandagalirwa
  8. Steven R Meshnick
  9. Jonathan B Parr
  10. Hannah C Slater
  1. Imperial College London, United Kingdom
  2. World Health Organisation, Switzerland
  3. University of Kinshasa, Democratic Republic of the Congo
  4. University of North Carolina, United States

Abstract

Ten countries have reported pfhrp2/pfhrp3 gene deletions since the first observation of pfhrp2-deleted parasites in 2012. In a previous study (Watson et al., 2017) we characterised the drivers selecting for pfhrp2/3 deletions, and mapped the regions in Africa with the greatest selection pressure. In February 2018, the World Health Organization issued guidance on investigating suspected false-negative rapid diagnostic tests (RDTs) due to pfhrp2/3 deletions. However, no guidance is provided regarding the timing of investigations. Failure to consider seasonal variation could cause premature decisions to switch to alternative RDTs. In response, we have extended our methods and predict that the prevalence of false-negative RDTs due to pfhrp2/3 deletions is highest when sampling from younger individuals during the beginning of the rainy season. We conclude by producing a map of the regions impacted by seasonal fluctuations in pfhrp2/3 deletions and a database identifying optimum sampling intervals to support malaria control programmes.

Data availability

All data generated are provided within the online database, hosted through a shiny application at https://ojwatson.shinyapps.io/seasonal_hrp2/. The raw data for the application is available within the github repository at https://github.com/OJWatson/hrp2malaRia.

The following previously published data sets were used

Article and author information

Author details

  1. Oliver John Watson

    MRC Center for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    For correspondence
    o.watson15@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2374-0741
  2. Robert Verity

    MRC Center for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Azra C Ghani

    MRC Center for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Tini Garske

    MRC Center for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Jane Cunningham

    Global Malaria Programme, World Health Organisation, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Antoinette Tshefu

    School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
    Competing interests
    The authors declare that no competing interests exist.
  7. Melchior K Mwandagalirwa

    School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
    Competing interests
    The authors declare that no competing interests exist.
  8. Steven R Meshnick

    4.Department of Epidemiology, Gillings School for Global Public Health, University of North Carolina, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jonathan B Parr

    Division of Infectious Diseases, University of North Carolina, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Hannah C Slater

    1.MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Wellcome (109312/Z/15/Z)

  • Oliver John Watson

Medical Research Council (MR/N01507X/1)

  • Robert Verity

Department for International Development

  • Azra C Ghani

Medical Research Council

  • Tini Garske

National Institute of Allergy and Infectious Diseases (R01AI132547)

  • Steven R Meshnick
  • Jonathan B Parr

American Society for Tropical Medicine and Hygiene-Burroughs Wellcome Fund

  • Jonathan B Parr

Imperial College London

  • Hannah C Slater

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ben Cooper, Mahidol Oxford Tropical Medicine Research Unit, Thailand

Version history

  1. Received: July 25, 2018
  2. Accepted: April 29, 2019
  3. Accepted Manuscript published: May 2, 2019 (version 1)
  4. Version of Record published: May 23, 2019 (version 2)

Copyright

© 2019, Watson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,094
    views
  • 216
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Oliver John Watson
  2. Robert Verity
  3. Azra C Ghani
  4. Tini Garske
  5. Jane Cunningham
  6. Antoinette Tshefu
  7. Melchior K Mwandagalirwa
  8. Steven R Meshnick
  9. Jonathan B Parr
  10. Hannah C Slater
(2019)
Impact of seasonal variations in Plasmodium falciparum malaria transmission on the surveillance of pfhrp2 gene deletions
eLife 8:e40339.
https://doi.org/10.7554/eLife.40339

Share this article

https://doi.org/10.7554/eLife.40339

Further reading

    1. Epidemiology and Global Health
    Zhanwei Du, Lin Wang ... Lauren A Meyers
    Short Report Updated

    Paxlovid, a SARS-CoV-2 antiviral, not only prevents severe illness but also curtails viral shedding, lowering transmission risks from treated patients. By fitting a mathematical model of within-host Omicron viral dynamics to electronic health records data from 208 hospitalized patients in Hong Kong, we estimate that Paxlovid can inhibit over 90% of viral replication. However, its effectiveness critically depends on the timing of treatment. If treatment is initiated three days after symptoms first appear, we estimate a 17% chance of a post-treatment viral rebound and a 12% (95% CI: 0–16%) reduction in overall infectiousness for non-rebound cases. Earlier treatment significantly elevates the risk of rebound without further reducing infectiousness, whereas starting beyond five days reduces its efficacy in curbing peak viral shedding. Among the 104 patients who received Paxlovid, 62% began treatment within an optimal three-to-five-day day window after symptoms appeared. Our findings indicate that broader global access to Paxlovid, coupled with appropriately timed treatment, can mitigate the severity and transmission of SARS-Cov-2.

    1. Cancer Biology
    2. Epidemiology and Global Health
    Lijun Bian, Zhimin Ma ... Guangfu Jin
    Research Article

    Background:

    Age is the most important risk factor for cancer, but aging rates are heterogeneous across individuals. We explored a new measure of aging-Phenotypic Age (PhenoAge)-in the risk prediction of site-specific and overall cancer.

    Methods:

    Using Cox regression models, we examined the association of Phenotypic Age Acceleration (PhenoAgeAccel) with cancer incidence by genetic risk group among 374,463 participants from the UK Biobank. We generated PhenoAge using chronological age and nine biomarkers, PhenoAgeAccel after subtracting the effect of chronological age by regression residual, and an incidence-weighted overall cancer polygenic risk score (CPRS) based on 20 cancer site-specific polygenic risk scores (PRSs).

    Results:

    Compared with biologically younger participants, those older had a significantly higher risk of overall cancer, with hazard ratios (HRs) of 1.22 (95% confidence interval, 1.18–1.27) in men, and 1.26 (1.22–1.31) in women, respectively. A joint effect of genetic risk and PhenoAgeAccel was observed on overall cancer risk, with HRs of 2.29 (2.10–2.51) for men and 1.94 (1.78–2.11) for women with high genetic risk and older PhenoAge compared with those with low genetic risk and younger PhenoAge. PhenoAgeAccel was negatively associated with the number of healthy lifestyle factors (Beta = –1.01 in men, p<0.001; Beta = –0.98 in women, p<0.001).

    Conclusions:

    Within and across genetic risk groups, older PhenoAge was consistently related to an increased risk of incident cancer with adjustment for chronological age and the aging process could be retarded by adherence to a healthy lifestyle.

    Funding:

    This work was supported by the National Natural Science Foundation of China (82230110, 82125033, 82388102 to GJ; 82273714 to MZ); and the Excellent Youth Foundation of Jiangsu Province (BK20220100 to MZ).