Abstract

The two Ral GTPases, RalA and RalB, have crucial roles downstream Ras oncoproteins in human cancers; in particular, RalB is involved in invasion and metastasis. However, therapies targeting Ral signalling are not available yet. By a novel optogenetic approach, we found that light-controlled activation of Ral at plasma-membrane promotes the recruitment of the Wave Regulatory Complex (WRC) via its effector exocyst, with consequent induction of protrusions and invasion. We show that active Ras signals to RalB via two RalGEFs (Guanine nucleotide Exchange Factors), RGL1 and RGL2, to foster invasiveness; RalB contribution appears to be more important than that of MAPK and PI3K pathways. Moreover, on the clinical side, we uncovered a potential role of RalB in human breast cancers by determining that RalB expression at protein level increases in a manner consistent with progression toward metastasis. This work highlights the Ras-RGL1/2-RalB-exocyst-WRC axis as appealing target for novel anti-cancer strategies.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Giulia Zago

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Irina Veith

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Manish Singh

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Laetitia Fuhrmann

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Simon De Beco

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Amanda Remorino

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Saori Takaoka

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Marjorie Palmeri

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Frédérique Berger

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Nathalie Brandon

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Ahmed El Marjou

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Anne Vincent-Salomon

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Jacques Camonis

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  14. Mathieu Coppey

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  15. Maria Carla Parrini

    Institut Curie, Paris, France
    For correspondence
    maria-carla.parrini@curie.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7082-9792

Funding

Fondation ARC pour la Recherche sur le Cancer (PJA 20151203371)

  • Maria Carla Parrini

Institut National de la Santé et de la Recherche Médicale (PC201530)

  • Mathieu Coppey

Agence Nationale de la Recherche (ANR-10-IDEX-0001-02 PSL)

  • Mathieu Coppey

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Zago et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,069
    views
  • 276
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Giulia Zago
  2. Irina Veith
  3. Manish Singh
  4. Laetitia Fuhrmann
  5. Simon De Beco
  6. Amanda Remorino
  7. Saori Takaoka
  8. Marjorie Palmeri
  9. Frédérique Berger
  10. Nathalie Brandon
  11. Ahmed El Marjou
  12. Anne Vincent-Salomon
  13. Jacques Camonis
  14. Mathieu Coppey
  15. Maria Carla Parrini
(2018)
RalB directly triggers invasion downstream Ras by mobilizing the Wave complex
eLife 7:e40474.
https://doi.org/10.7554/eLife.40474

Share this article

https://doi.org/10.7554/eLife.40474

Further reading

    1. Cell Biology
    Tomoharu Kanie, Beibei Liu ... Peter K Jackson
    Research Article

    Distal appendages are nine-fold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for formation of the primary cilium, by regulating at least four critical steps: ciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, CEP15) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assays revealed that CEP89 selectively functions in RAB34+ ciliary vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.

    1. Cell Biology
    Tomoharu Kanie, Roy Ng ... Peter K Jackson
    Research Article

    The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.