1. Neuroscience
  2. Structural Biology and Molecular Biophysics
Download icon

Auxiliary subunits keep AMPA receptors compact during activation and desensitization

  1. Jelena Baranovic
  2. Andrew J R Plested  Is a corresponding author
  1. Humboldt Universität zu Berlin, Germany
Research Article
  • Cited 8
  • Views 1,794
  • Annotations
Cite this article as: eLife 2018;7:e40548 doi: 10.7554/eLife.40548


Signal transduction at vertebrate excitatory synapses involves the rapid activation of AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazole propionate) receptors, glutamate-gated ion channels whose four subunits assemble as a dimer-of-dimers. Technical advances in cryo-electron microscopy brought a slew of full-length structures of AMPA receptors, on their own and in combination with auxiliary subunits. These structures indicate that dimers might undergo substantial lateral motions during gating, opening up the extracellular layer along the central 2-fold symmetry axis. We used bifunctional methanethiosulfonate cross-linkers to calibrate the conformations found in functional AMPA receptors in the presence and absence of the auxiliary subunit Stargazin. Our data indicate that extracellular layer of AMPA receptors can get trapped in stable, opened-up conformations, especially upon long exposures to glutamate. In contrast, Stargazin limits this conformational flexibility. Thus, under synaptic conditions, where brief glutamate exposures and the presence of auxiliary proteins dominate, extracellular domains of AMPA receptors likely stay compact during gating.

Data availability

All data generated or analysed during this study are included in the manuscript. Source data files have been provided for Figure 2, 5 and 6.

Article and author information

Author details

  1. Jelena Baranovic

    Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrew J R Plested

    Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, Berlin, Germany
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6062-0832


H2020 European Research Council (Gluactive (647895))

  • Andrew J R Plested

Deutsche Forschungsgemeinschaft (NeuroCure EXC-257)

  • Andrew J R Plested

Deutsche Forschungsgemeinschaft (Heisenberg Professorship)

  • Andrew J R Plested

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. László Csanády, Semmelweis University, Hungary

Publication history

  1. Received: July 28, 2018
  2. Accepted: December 4, 2018
  3. Accepted Manuscript published: December 6, 2018 (version 1)
  4. Version of Record published: January 8, 2019 (version 2)


© 2018, Baranovic & Plested

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 1,794
    Page views
  • 316
  • 8

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Debora Fusca, Peter Kloppenburg
    Research Article

    Local interneurons (LNs) mediate complex interactions within the antennal lobe, the primary olfactory system of insects, and the functional analog of the vertebrate olfactory bulb. In the cockroach Periplaneta americana, as in other insects, several types of LNs with distinctive physiological and morphological properties can be defined. Here, we combined whole-cell patch-clamp recordings and Ca2+ imaging of individual LNs to analyze the role of spiking and nonspiking LNs in inter- and intraglomerular signaling during olfactory information processing. Spiking GABAergic LNs reacted to odorant stimulation with a uniform rise in [Ca2+]i in the ramifications of all innervated glomeruli. In contrast, in nonspiking LNs, glomerular Ca2+ signals were odorant specific and varied between glomeruli, resulting in distinct, glomerulus-specific tuning curves. The cell type-specific differences in Ca2+ dynamics support the idea that spiking LNs play a primary role in interglomerular signaling, while they assign nonspiking LNs an essential role in intraglomerular signaling.

    1. Neuroscience
    Wanhui Sheng et al.
    Research Article Updated

    Hypothalamic oxytocinergic magnocellular neurons have a fascinating ability to release peptide from both their axon terminals and from their dendrites. Existing data indicates that the relationship between somatic activity and dendritic release is not constant, but the mechanisms through which this relationship can be modulated are not completely understood. Here, we use a combination of electrical and optical recording techniques to quantify activity-induced calcium influx in proximal vs. distal dendrites of oxytocinergic magnocellular neurons located in the paraventricular nucleus of the hypothalamus (OT-MCNs). Results reveal that the dendrites of OT-MCNs are weak conductors of somatic voltage changes; however, activity-induced dendritic calcium influx can be robustly regulated by both osmosensitive and non-osmosensitive ion channels located along the dendritic membrane. Overall, this study reveals that dendritic conductivity is a dynamic and endogenously regulated feature of OT-MCNs that is likely to have substantial functional impact on central oxytocin release.