Control of neural crest multipotency by Wnt signaling and the Lin28/let-7 axis

Abstract

A crucial step in cell differentiation is the silencing of developmental programs underlying multipotency. While much is known about how lineage-specific genes are activated to generate distinct cell types, the mechanisms driving suppression of stemness are far less understood. To address this, we examined the regulation of the transcriptional network that maintains progenitor identity in avian neural crest cells. Our results show that a regulatory circuit formed by Wnt, Lin28a and let-7 miRNAs controls the deployment and the subsequent silencing of the multipotency program in a position-dependent manner. Transition from multipotency to differentiation is determined by the topological relationship between the migratory cells and the dorsal neural tube, which acts as a Wnt-producing stem cell niche. Our findings highlight a mechanism that rapidly silences complex regulatory programs, and elucidate how transcriptional networks respond to positional information during cell differentiation.

Data availability

All data generated for this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

Article and author information

Author details

  1. Debadrita Bhattacharya

    Department of Molecular Biology and Genetics,, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Megan Rothstein

    Department of Molecular Biology and Genetics,, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ana Paula Azambuja

    Department of Molecular Biology and Genetics,, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Marcos Simoes-Costa

    Department of Molecular Biology and Genetics,, Cornell University, Ithaca, United States
    For correspondence
    simoescosta@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1452-7068

Funding

National Institute of Dental and Craniofacial Research

  • Marcos Simoes-Costa

March of Dimes Foundation

  • Marcos Simoes-Costa

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard M White, Memorial Sloan Kettering Cancer Center, United States

Publication history

  1. Received: July 28, 2018
  2. Accepted: December 4, 2018
  3. Accepted Manuscript published: December 6, 2018 (version 1)
  4. Version of Record published: December 20, 2018 (version 2)

Copyright

© 2018, Bhattacharya et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,984
    Page views
  • 439
    Downloads
  • 30
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Debadrita Bhattacharya
  2. Megan Rothstein
  3. Ana Paula Azambuja
  4. Marcos Simoes-Costa
(2018)
Control of neural crest multipotency by Wnt signaling and the Lin28/let-7 axis
eLife 7:e40556.
https://doi.org/10.7554/eLife.40556

Further reading

    1. Developmental Biology
    Marianne E Emmert, Parul Aggarwal ... Roger Cornwall
    Research Article Updated

    Neonatal brachial plexus injury (NBPI) causes disabling and incurable muscle contractures that result from impaired longitudinal growth of denervated muscles. This deficit in muscle growth is driven by increased proteasome-mediated protein degradation, suggesting a dysregulation of muscle proteostasis. The myostatin (MSTN) pathway, a prominent muscle-specific regulator of proteostasis, is a putative signaling mechanism by which neonatal denervation could impair longitudinal muscle growth, and thus a potential target to prevent NBPI-induced contractures. Through a mouse model of NBPI, our present study revealed that pharmacologic inhibition of MSTN signaling induces hypertrophy, restores longitudinal growth, and prevents contractures in denervated muscles of female but not male mice, despite inducing hypertrophy of normally innervated muscles in both sexes. Additionally, the MSTN-dependent impairment of longitudinal muscle growth after NBPI in female mice is associated with perturbation of 20S proteasome activity, but not through alterations in canonical MSTN signaling pathways. These findings reveal a sex dimorphism in the regulation of neonatal longitudinal muscle growth and contractures, thereby providing insights into contracture pathophysiology, identifying a potential muscle-specific therapeutic target for contracture prevention, and underscoring the importance of sex as a biological variable in the pathophysiology of neuromuscular disorders.

    1. Developmental Biology
    2. Genetics and Genomics
    Ankit Sabharwal, Mark D Wishman ... Stephen C Ekker
    Research Advance Updated

    The clinical and largely unpredictable heterogeneity of phenotypes in patients with mitochondrial disorders demonstrates the ongoing challenges in the understanding of this semi-autonomous organelle in biology and disease. Previously, we used the gene-breaking transposon to create 1200 transgenic zebrafish strains tagging protein-coding genes (Ichino et al., 2020), including the lrpprc locus. Here, we present and characterize a new genetic revertible animal model that recapitulates components of Leigh Syndrome French Canadian Type (LSFC), a mitochondrial disorder that includes diagnostic liver dysfunction. LSFC is caused by allelic variations in the LRPPRC gene, involved in mitochondrial mRNA polyadenylation and translation. lrpprc zebrafish homozygous mutants displayed biochemical and mitochondrial phenotypes similar to clinical manifestations observed in patients, including dysfunction in lipid homeostasis. We were able to rescue these phenotypes in the disease model using a liver-specific genetic model therapy, functionally demonstrating a previously under-recognized critical role for the liver in the pathophysiology of this disease.