Delayed inhibition mechanism for secondary channel factor regulation of ribosomal RNA transcription

  1. Sarah K Stumper
  2. Harini Ravi
  3. Larry J Friedman
  4. Rachel Anne Mooney
  5. Ivan R Corrêa
  6. Anne Gershenson
  7. Robert Landick
  8. Jeff Gelles  Is a corresponding author
  1. Brandeis University, United States
  2. University of Wisconsin-Madison, United States
  3. New England Biolabs, Inc, United States
  4. University of Massachusetts, United States

Abstract

RNA polymerases (RNAPs) contain a conserved 'secondary channel' which binds regulatory factors that modulate transcription initiation. In Escherichia coli, the secondary channel factors (SCFs) GreB and DksA both repress ribosomal RNA (rRNA) transcription, but SCF loading and repression mechanisms are unclear. We observed in vitro fluorescently labeled GreB molecules binding to single RNAPs and initiation of individual transcripts from an rRNA promoter. GreB arrived and departed from promoters only in complex with RNAP. GreB did not alter initial RNAP-promoter binding but instead blocked a step after conformational rearrangement of the initial RNAP-promoter complex. Strikingly, GreB-RNAP complexes never initiated at an rRNA promoter; only RNAP molecules arriving at the promoter without bound GreB produced transcript. The data reveal that a model SCF functions by a 'delayed inhibition' mechanism and suggest that rRNA promoters are inhibited by GreB/DksA because their short-lived RNAP complexes do not allow sufficient time for SCFs to dissociate.

Data availability

All data analyzed for this study are included in the manuscript or in the source data files (doi:10.5281/zenodo.2530159).

The following data sets were generated

Article and author information

Author details

  1. Sarah K Stumper

    Department of Biochemistry, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Harini Ravi

    Department of Biochemistry, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Larry J Friedman

    Department of Biochemistry, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4946-8731
  4. Rachel Anne Mooney

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ivan R Corrêa

    New England Biolabs, Inc, Ipswich, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Anne Gershenson

    Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Robert Landick

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5042-0383
  8. Jeff Gelles

    Department of Biochemistry, Brandeis University, Waltham, United States
    For correspondence
    gelles@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7910-3421

Funding

National Institute of General Medical Sciences (R01GM081648)

  • Jeff Gelles

National Science Foundation (MCB-0446220)

  • Anne Gershenson

National Institute of General Medical Sciences (R01GM38660)

  • Robert Landick

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Stumper et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,280
    views
  • 256
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sarah K Stumper
  2. Harini Ravi
  3. Larry J Friedman
  4. Rachel Anne Mooney
  5. Ivan R Corrêa
  6. Anne Gershenson
  7. Robert Landick
  8. Jeff Gelles
(2019)
Delayed inhibition mechanism for secondary channel factor regulation of ribosomal RNA transcription
eLife 8:e40576.
https://doi.org/10.7554/eLife.40576

Share this article

https://doi.org/10.7554/eLife.40576

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.