Abstract

Fatigue due to physical exertion is a ubiquitous phenomenon in everyday life and especially common in a range of neurological diseases. While the effect of fatigue on limiting skill execution are well known, its influence on learning new skills is unclear. This is of particular interest as it is common practice to train athletes, musicians or perform rehabilitation exercises up to and beyond a point of fatigue. In a series of experiments, we describe how muscle fatigue, defined as degradation of maximum force after exertion, impairs motor skill learning beyond its effects on task execution. The negative effects on learning are evidenced by impaired task acquisition on subsequent practice days even in the absence of fatigue. Further, we found that this effect is in part mediated centrally and can be alleviated by altering motor cortex function. Thus, the common practice of training while, or beyond, fatigue levels should be carefully reconsidered, since this affects overall long-term skill learning.

Data availability

The full data-set of this study is available at (https://osf.io/ypxfg/).

The following data sets were generated
    1. Branscheidt M
    (2018) Motor learning under fatigue
    Open Science Framework, ypxfg.

Article and author information

Author details

  1. Meret Branscheidt

    The Human Brain Physiology and Stimulation Laboratory, Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, United States
    For correspondence
    mbransc1@jhmi.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4008-6916
  2. Panagiotis Kassavetis

    The Human Brain Physiology and Stimulation Laboratory, Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Manuel Anaya

    The Human Brain Physiology and Stimulation Laboratory, Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Davis Rogers

    The Human Brain Physiology and Stimulation Laboratory, Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Han Debra Huang

    The Human Brain Physiology and Stimulation Laboratory, Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Martin A Lindquist

    Department of Biostatistics, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Pablo Celnik

    The Human Brain Physiology and Stimulation Laboratory, Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, United States
    For correspondence
    pcelnik@jhmi.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

The authors declare that there was no funding for this work

Ethics

Human subjects: The experiments were approved by the respective ethics boards at Johns Hopkins School of Medicine Institutional Review Board and the North West London Research Ethics Committee in accordance to the Declaration of Helsinki, and written informed consent was obtained from all participants (ethics board number 00077792).

Copyright

© 2019, Branscheidt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,805
    views
  • 801
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Meret Branscheidt
  2. Panagiotis Kassavetis
  3. Manuel Anaya
  4. Davis Rogers
  5. Han Debra Huang
  6. Martin A Lindquist
  7. Pablo Celnik
(2019)
Fatigue induces long lasting detrimental changes in motor skill learning
eLife 8:e40578.
https://doi.org/10.7554/eLife.40578

Share this article

https://doi.org/10.7554/eLife.40578