Promoting subjective preferences in simple economic choices during nap

  1. Sizhi Ai
  2. Yunlu Yin
  3. Yu Chen
  4. Cong Wang
  5. Yan Sun
  6. Xiangdong Tang
  7. Lin Lu
  8. Lusha Zhu  Is a corresponding author
  9. Jie Shi  Is a corresponding author
  1. Peking University, China
  2. Sichuan University, China

Abstract

Sleep is known to benefit consolidation of memories, especially those of motivational relevance. Yet it remains largely unknown the extent to which sleep influences reward-associated behavior, in particular, whether and how sleep modulates reward evaluation that critically underlies value-based decisions. Here, we show that neural processing during sleep can selectively bias preferences in simple economic choices when the sleeper is stimulated by covert, reward-associated cues. Specifically, presenting the spoken name of a familiar, valued snack item during midday nap significantly improves the preference for that item relative to items not externally cued. The cueing-specific preference enhancement is sleep-dependent and can be predicted by cue-induced neurophysiological signals at the subject and item level. Computational modeling further suggests that sleep cueing accelerates evidence accumulation for cued options during the post-sleep choice process in a manner consistent with the preference shift. These findings suggest that neurocognitive processing during sleep contributes to the fine-tuning of subjective preferences in a flexible, selective manner.

Data availability

Data and code used for data analysis are publicly available online via Open Science Framework (OSF) at (https://osf.io/9ndhy/).

The following data sets were generated

Article and author information

Author details

  1. Sizhi Ai

    National Institute on Drug Dependence, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yunlu Yin

    IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yu Chen

    National Institute on Drug Dependence, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Cong Wang

    IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yan Sun

    National Institute on Drug Dependence, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiangdong Tang

    Sleep Medicine Center, Sichuan University, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Lin Lu

    National Institute on Drug Dependence, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Lusha Zhu

    IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
    For correspondence
    lushazhu@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8717-6356
  9. Jie Shi

    National Institute on Drug Dependence, Peking University, Beijing, China
    For correspondence
    shijie@bjmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6567-8160

Funding

National Natural Science Foundation of China (31671171)

  • Lusha Zhu

National Natural Science Foundation of China (31630034)

  • Lusha Zhu

National Natural Science Foundation of China (31571099)

  • Jie Shi

National Basic Research Program of China (2015CB856404)

  • Jie Shi

National Basic Research Program of China (2015CB553503)

  • Jie Shi

National Natural Science Foundation of China (81801315)

  • Sizhi Ai

The funders had no role in study design, data collection, and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants provided written informed consent. Study procedures were reviewed and approved by the Ethics Committee at Peking University.

Copyright

© 2018, Ai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,272
    views
  • 507
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sizhi Ai
  2. Yunlu Yin
  3. Yu Chen
  4. Cong Wang
  5. Yan Sun
  6. Xiangdong Tang
  7. Lin Lu
  8. Lusha Zhu
  9. Jie Shi
(2018)
Promoting subjective preferences in simple economic choices during nap
eLife 7:e40583.
https://doi.org/10.7554/eLife.40583

Share this article

https://doi.org/10.7554/eLife.40583

Further reading

    1. Developmental Biology
    2. Neuroscience
    Ev L Nichols, Joo Lee, Kang Shen
    Research Article

    During development axons undergo long-distance migrations as instructed by guidance molecules and their receptors, such as UNC-6/Netrin and UNC-40/DCC. Guidance cues act through long-range diffusive gradients (chemotaxis) or local adhesion (haptotaxis). However, how these discrete modes of action guide axons in vivo is poorly understood. Using time-lapse imaging of axon guidance in C. elegans, we demonstrate that UNC-6 and UNC-40 are required for local adhesion to an intermediate target and subsequent directional growth. Exogenous membrane-tethered UNC-6 is sufficient to mediate adhesion but not directional growth, demonstrating the separability of haptotaxis and chemotaxis. This conclusion is further supported by the endogenous UNC-6 distribution along the axon’s route. The intermediate and final targets are enriched in UNC-6 and separated by a ventrodorsal UNC-6 gradient. Continuous growth through the gradient requires UNC-40, which recruits UNC-6 to the growth cone tip. Overall, these data suggest that UNC-6 stimulates stepwise haptotaxis and chemotaxis in vivo.

    1. Neuroscience
    Mihály Vöröslakos, Yunchang Zhang ... György Buzsáki
    Tools and Resources

    Brain states fluctuate between exploratory and consummatory phases of behavior. These state changes affect both internal computation and the organism’s responses to sensory inputs. Understanding neuronal mechanisms supporting exploratory and consummatory states and their switching requires experimental control of behavioral shifts and collecting sufficient amounts of brain data. To achieve this goal, we developed the ThermoMaze, which exploits the animal’s natural warmth-seeking homeostatic behavior. By decreasing the floor temperature and selectively heating unmarked areas, we observed that mice avoided the aversive state by exploring the maze and finding the warm spot. In its design, the ThermoMaze is analogous to the widely used water maze but without the inconvenience of a wet environment and, therefore, allows the collection of physiological data in many trials. We combined the ThermoMaze with electrophysiology recording, and report that spiking activity of hippocampal CA1 neurons during sharp-wave ripple events encode the position of mice. Thus, place-specific firing is not confined to locomotion and associated theta oscillations but persist during waking immobility and sleep at the same location. The ThermoMaze will allow for detailed studies of brain correlates of immobility, preparatory–consummatory transitions, and open new options for studying behavior-mediated temperature homeostasis.