1. Neuroscience
Download icon

Promoting subjective preferences in simple economic choices during nap

  1. Sizhi Ai
  2. Yunlu Yin
  3. Yu Chen
  4. Cong Wang
  5. Yan Sun
  6. Xiangdong Tang
  7. Lin Lu
  8. Lusha Zhu  Is a corresponding author
  9. Jie Shi  Is a corresponding author
  1. Peking University, China
  2. Sichuan University, China
Research Article
  • Cited 1
  • Views 2,148
  • Annotations
Cite this article as: eLife 2018;7:e40583 doi: 10.7554/eLife.40583

Abstract

Sleep is known to benefit consolidation of memories, especially those of motivational relevance. Yet it remains largely unknown the extent to which sleep influences reward-associated behavior, in particular, whether and how sleep modulates reward evaluation that critically underlies value-based decisions. Here, we show that neural processing during sleep can selectively bias preferences in simple economic choices when the sleeper is stimulated by covert, reward-associated cues. Specifically, presenting the spoken name of a familiar, valued snack item during midday nap significantly improves the preference for that item relative to items not externally cued. The cueing-specific preference enhancement is sleep-dependent and can be predicted by cue-induced neurophysiological signals at the subject and item level. Computational modeling further suggests that sleep cueing accelerates evidence accumulation for cued options during the post-sleep choice process in a manner consistent with the preference shift. These findings suggest that neurocognitive processing during sleep contributes to the fine-tuning of subjective preferences in a flexible, selective manner.

Article and author information

Author details

  1. Sizhi Ai

    National Institute on Drug Dependence, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yunlu Yin

    IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yu Chen

    National Institute on Drug Dependence, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Cong Wang

    IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yan Sun

    National Institute on Drug Dependence, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiangdong Tang

    Sleep Medicine Center, Sichuan University, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Lin Lu

    National Institute on Drug Dependence, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Lusha Zhu

    IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
    For correspondence
    lushazhu@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8717-6356
  9. Jie Shi

    National Institute on Drug Dependence, Peking University, Beijing, China
    For correspondence
    shijie@bjmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6567-8160

Funding

National Natural Science Foundation of China (31671171)

  • Lusha Zhu

National Natural Science Foundation of China (31630034)

  • Lusha Zhu

National Natural Science Foundation of China (31571099)

  • Jie Shi

National Basic Research Program of China (2015CB856404)

  • Jie Shi

National Basic Research Program of China (2015CB553503)

  • Jie Shi

National Natural Science Foundation of China (81801315)

  • Sizhi Ai

The funders had no role in study design, data collection, and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants provided written informed consent. Study procedures were reviewed and approved by the Ethics Committee at Peking University.

Reviewing Editor

  1. Michael Breakspear, QIMR Berghofer Medical Research Institute, Australia

Publication history

  1. Received: July 30, 2018
  2. Accepted: December 6, 2018
  3. Accepted Manuscript published: December 6, 2018 (version 1)
  4. Version of Record published: December 14, 2018 (version 2)

Copyright

© 2018, Ai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,148
    Page views
  • 328
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Shenghong He et al.
    Research Article Updated

    Previous studies have explored neurofeedback training for Parkinsonian patients to suppress beta oscillations in the subthalamic nucleus (STN). However, its impacts on movements and Parkinsonian tremor are unclear. We developed a neurofeedback paradigm targeting STN beta bursts and investigated whether neurofeedback training could improve motor initiation in Parkinson’s disease compared to passive observation. Our task additionally allowed us to test which endogenous changes in oscillatory STN activities are associated with trial-to-trial motor performance. Neurofeedback training reduced beta synchrony and increased gamma activity within the STN, and reduced beta band coupling between the STN and motor cortex. These changes were accompanied by reduced reaction times in subsequently cued movements. However, in Parkinsonian patients with pre-existing symptoms of tremor, successful volitional beta suppression was associated with an amplification of tremor which correlated with theta band activity in STN local field potentials, suggesting an additional cross-frequency interaction between STN beta and theta activities.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Julien G Roth et al.
    Tools and Resources Updated

    Microdeletions and microduplications of the 16p11.2 chromosomal locus are associated with syndromic neurodevelopmental disorders and reciprocal physiological conditions such as macro/microcephaly and high/low body mass index. To facilitate cellular and molecular investigations into these phenotypes, 65 clones of human induced pluripotent stem cells (hiPSCs) were generated from 13 individuals with 16p11.2 copy number variations (CNVs). To ensure these cell lines were suitable for downstream mechanistic investigations, a customizable bioinformatic strategy for the detection of random integration and expression of reprogramming vectors was developed and leveraged towards identifying a subset of ‘footprint’-free hiPSC clones. Transcriptomic profiling of cortical neural progenitor cells derived from these hiPSCs identified alterations in gene expression patterns which precede morphological abnormalities reported at later neurodevelopmental stages. Interpreting clinical information—available with the cell lines by request from the Simons Foundation Autism Research Initiative—with this transcriptional data revealed disruptions in gene programs related to both nervous system function and cellular metabolism. As demonstrated by these analyses, this publicly available resource has the potential to serve as a powerful medium for probing the etiology of developmental disorders associated with 16p11.2 CNVs.