High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo

  1. Guanghan Meng
  2. Yajie Liang
  3. Sarah Sarsfield
  4. Wan-chen Jiang
  5. Rongwen Lu
  6. Joshua Tate Dudman
  7. Yeka Aponte
  8. Na Ji  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States
  3. National Institute on Drug Abuse, United States
  4. Johns Hopkins University School of Medicine, United States

Abstract

Optical imaging has become a powerful tool for studying brains in vivo. The opacity of adult brains makes microendoscopy, with an optical probe such as a gradient index (GRIN) lens embedded into brain tissue to provide optical relay, the method of choice for imaging neurons and neural activity in deeply buried brain structures. Incorporating a Bessel focus scanning module into two-photon fluorescence microendoscopy, we extended the excitation focus axially and improved its lateral resolution. Scanning the Bessel focus in 2D, we imaged volumes of neurons at high-throughput while resolving fine structures such as synaptic terminals. We applied this approach to the volumetric anatomical imaging of dendritic spines and axonal boutons in the mouse hippocampus, and functional imaging of GABAergic neurons in the mouse lateral hypothalamus in vivo.

Data availability

Almost all data needed to evaluate the conclusions in the paper are present in the paper or the supplementary materials; Raw image data for Figs. 2, 4 & 9 are available from Dryad, 10.5061/dryad.pr4t978

The following data sets were generated

Article and author information

Author details

  1. Guanghan Meng

    Department of Physics, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. Yajie Liang

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  3. Sarah Sarsfield

    Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Wan-chen Jiang

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  5. Rongwen Lu

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    Rongwen Lu, The Bessel focus scanning intellectual property has been licensed to Thorlabs, Inc. by HHMI.
  6. Joshua Tate Dudman

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4436-1057
  7. Yeka Aponte

    Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5967-2579
  8. Na Ji

    Department of Physics, University of California, Berkeley, Berkeley, United States
    For correspondence
    jina@berkeley.edu
    Competing interests
    Na Ji, The Bessel focus scanning intellectual property has been licensed to Thorlabs, Inc. by HHMI.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5527-1663

Funding

Howard Hughes Medical Institute

  • Guanghan Meng
  • Yajie Liang
  • Wan-chen Jiang
  • Rongwen Lu
  • Joshua Tate Dudman
  • Na Ji

National Institute of Neurological Disorders and Stroke

  • Guanghan Meng
  • Na Ji

National Institute on Drug Abuse

  • Sarah Sarsfield
  • Yeka Aponte

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David Kleinfeld, University of California, San Diego, United States

Ethics

Animal experimentation: All animal experiments were conducted according to the United States National Institutes of Health guidelines for animal research. Procedures and protocols were approved by the Institutional Animal Care and Use Committee at Janelia Research Campus, Howard Hughes Medical Institute (protocol number: 16-147)

Version history

  1. Received: August 5, 2018
  2. Accepted: December 20, 2018
  3. Accepted Manuscript published: January 3, 2019 (version 1)
  4. Accepted Manuscript updated: January 4, 2019 (version 2)
  5. Version of Record published: January 18, 2019 (version 3)

Copyright

© 2019, Meng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,235
    views
  • 1,585
    downloads
  • 74
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guanghan Meng
  2. Yajie Liang
  3. Sarah Sarsfield
  4. Wan-chen Jiang
  5. Rongwen Lu
  6. Joshua Tate Dudman
  7. Yeka Aponte
  8. Na Ji
(2019)
High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo
eLife 8:e40805.
https://doi.org/10.7554/eLife.40805

Share this article

https://doi.org/10.7554/eLife.40805

Further reading

    1. Neuroscience
    Ivan Tomić, Paul M Bays
    Research Article

    Probing memory of a complex visual image within a few hundred milliseconds after its disappearance reveals significantly greater fidelity of recall than if the probe is delayed by as little as a second. Classically interpreted, the former taps into a detailed but rapidly decaying visual sensory or ‘iconic’ memory (IM), while the latter relies on capacity-limited but comparatively stable visual working memory (VWM). While iconic decay and VWM capacity have been extensively studied independently, currently no single framework quantitatively accounts for the dynamics of memory fidelity over these time scales. Here, we extend a stationary neural population model of VWM with a temporal dimension, incorporating rapid sensory-driven accumulation of activity encoding each visual feature in memory, and a slower accumulation of internal error that causes memorized features to randomly drift over time. Instead of facilitating read-out from an independent sensory store, an early cue benefits recall by lifting the effective limit on VWM signal strength imposed when multiple items compete for representation, allowing memory for the cued item to be supplemented with information from the decaying sensory trace. Empirical measurements of human recall dynamics validate these predictions while excluding alternative model architectures. A key conclusion is that differences in capacity classically thought to distinguish IM and VWM are in fact contingent upon a single resource-limited WM store.

    1. Neuroscience
    Emilio Salinas, Bashirul I Sheikh
    Insight

    Our ability to recall details from a remembered image depends on a single mechanism that is engaged from the very moment the image disappears from view.