1. Neuroscience
Download icon

High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo

  1. Guanghan Meng
  2. Yajie Liang
  3. Sarah Sarsfield
  4. Wan-chen Jiang
  5. Rongwen Lu
  6. Joshua Tate Dudman
  7. Yeka Aponte
  8. Na Ji  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States
  3. National Institute on Drug Abuse, United States
  4. Johns Hopkins University School of Medicine, United States
Tools and Resources
  • Cited 38
  • Views 8,183
  • Annotations
Cite this article as: eLife 2019;8:e40805 doi: 10.7554/eLife.40805

Abstract

Optical imaging has become a powerful tool for studying brains in vivo. The opacity of adult brains makes microendoscopy, with an optical probe such as a gradient index (GRIN) lens embedded into brain tissue to provide optical relay, the method of choice for imaging neurons and neural activity in deeply buried brain structures. Incorporating a Bessel focus scanning module into two-photon fluorescence microendoscopy, we extended the excitation focus axially and improved its lateral resolution. Scanning the Bessel focus in 2D, we imaged volumes of neurons at high-throughput while resolving fine structures such as synaptic terminals. We applied this approach to the volumetric anatomical imaging of dendritic spines and axonal boutons in the mouse hippocampus, and functional imaging of GABAergic neurons in the mouse lateral hypothalamus in vivo.

Data availability

Almost all data needed to evaluate the conclusions in the paper are present in the paper or the supplementary materials; Raw image data for Figs. 2, 4 & 9 are available from Dryad, 10.5061/dryad.pr4t978

The following data sets were generated

Article and author information

Author details

  1. Guanghan Meng

    Department of Physics, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. Yajie Liang

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  3. Sarah Sarsfield

    Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Wan-chen Jiang

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  5. Rongwen Lu

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    Rongwen Lu, The Bessel focus scanning intellectual property has been licensed to Thorlabs, Inc. by HHMI.
  6. Joshua Tate Dudman

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4436-1057
  7. Yeka Aponte

    Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5967-2579
  8. Na Ji

    Department of Physics, University of California, Berkeley, Berkeley, United States
    For correspondence
    jina@berkeley.edu
    Competing interests
    Na Ji, The Bessel focus scanning intellectual property has been licensed to Thorlabs, Inc. by HHMI.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5527-1663

Funding

Howard Hughes Medical Institute

  • Guanghan Meng
  • Yajie Liang
  • Wan-chen Jiang
  • Rongwen Lu
  • Joshua Tate Dudman
  • Na Ji

National Institute of Neurological Disorders and Stroke

  • Guanghan Meng
  • Na Ji

National Institute on Drug Abuse

  • Sarah Sarsfield
  • Yeka Aponte

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were conducted according to the United States National Institutes of Health guidelines for animal research. Procedures and protocols were approved by the Institutional Animal Care and Use Committee at Janelia Research Campus, Howard Hughes Medical Institute (protocol number: 16-147)

Reviewing Editor

  1. David Kleinfeld, University of California, San Diego, United States

Publication history

  1. Received: August 5, 2018
  2. Accepted: December 20, 2018
  3. Accepted Manuscript published: January 3, 2019 (version 1)
  4. Accepted Manuscript updated: January 4, 2019 (version 2)
  5. Version of Record published: January 18, 2019 (version 3)

Copyright

© 2019, Meng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,183
    Page views
  • 1,277
    Downloads
  • 38
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Andrea Loreto et al.
    Research Article

    Axon loss underlies symptom onset and progression in many neurodegenerative disorders. Axon degeneration in injury and disease is promoted by activation of the nicotinamide adenine dinucleotide (NAD)-consuming enzyme SARM1. Here, we report a novel activator of SARM1, a metabolite of the pesticide and neurotoxin vacor. Removal of SARM1 completely rescues mouse neurons from vacor-induced neuron and axon death in vitro and in vivo. We present the crystal structure the Drosophila SARM1 regulatory domain complexed with this activator, the vacor metabolite VMN, which as the most potent activator yet know is likely to support drug development for human SARM1 and NMNAT2 disorders. This study indicates the mechanism of neurotoxicity and pesticide action by vacor, raises important questions about other pyridines in wider use today, provides important new tools for drug discovery, and demonstrates that removing SARM1 can robustly block programmed axon death induced by toxicity as well as genetic mutation.

    1. Neuroscience
    Simon A Sharples, Gareth B Miles
    Research Article Updated

    The size principle underlies the orderly recruitment of motor units; however, motoneuron size is a poor predictor of recruitment amongst functionally defined motoneuron subtypes. Whilst intrinsic properties are key regulators of motoneuron recruitment, the underlying currents involved are not well defined. Whole-cell patch-clamp electrophysiology was deployed to study intrinsic properties, and the underlying currents, that contribute to the differential activation of delayed and immediate firing motoneuron subtypes. Motoneurons were studied during the first three postnatal weeks in mice to identify key properties that contribute to rheobase and may be important to establish orderly recruitment. We find that delayed and immediate firing motoneurons are functionally homogeneous during the first postnatal week and are activated based on size, irrespective of subtype. The rheobase of motoneuron subtypes becomes staggered during the second postnatal week, which coincides with the differential maturation of passive and active properties, particularly persistent inward currents. Rheobase of delayed firing motoneurons increases further in the third postnatal week due to the development of a prominent resting hyperpolarization-activated inward current. Our results suggest that motoneuron recruitment is multifactorial, with recruitment order established during postnatal development through the differential maturation of passive properties and sequential integration of persistent and hyperpolarization-activated inward currents.