High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo

  1. Guanghan Meng
  2. Yajie Liang
  3. Sarah Sarsfield
  4. Wan-chen Jiang
  5. Rongwen Lu
  6. Joshua Tate Dudman
  7. Yeka Aponte
  8. Na Ji  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States
  3. National Institute on Drug Abuse, United States
  4. Johns Hopkins University School of Medicine, United States

Abstract

Optical imaging has become a powerful tool for studying brains in vivo. The opacity of adult brains makes microendoscopy, with an optical probe such as a gradient index (GRIN) lens embedded into brain tissue to provide optical relay, the method of choice for imaging neurons and neural activity in deeply buried brain structures. Incorporating a Bessel focus scanning module into two-photon fluorescence microendoscopy, we extended the excitation focus axially and improved its lateral resolution. Scanning the Bessel focus in 2D, we imaged volumes of neurons at high-throughput while resolving fine structures such as synaptic terminals. We applied this approach to the volumetric anatomical imaging of dendritic spines and axonal boutons in the mouse hippocampus, and functional imaging of GABAergic neurons in the mouse lateral hypothalamus in vivo.

Data availability

Almost all data needed to evaluate the conclusions in the paper are present in the paper or the supplementary materials; Raw image data for Figs. 2, 4 & 9 are available from Dryad, 10.5061/dryad.pr4t978

The following data sets were generated

Article and author information

Author details

  1. Guanghan Meng

    Department of Physics, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. Yajie Liang

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  3. Sarah Sarsfield

    Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Wan-chen Jiang

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  5. Rongwen Lu

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    Rongwen Lu, The Bessel focus scanning intellectual property has been licensed to Thorlabs, Inc. by HHMI.
  6. Joshua Tate Dudman

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4436-1057
  7. Yeka Aponte

    Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5967-2579
  8. Na Ji

    Department of Physics, University of California, Berkeley, Berkeley, United States
    For correspondence
    jina@berkeley.edu
    Competing interests
    Na Ji, The Bessel focus scanning intellectual property has been licensed to Thorlabs, Inc. by HHMI.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5527-1663

Funding

Howard Hughes Medical Institute

  • Guanghan Meng
  • Yajie Liang
  • Wan-chen Jiang
  • Rongwen Lu
  • Joshua Tate Dudman
  • Na Ji

National Institute of Neurological Disorders and Stroke

  • Guanghan Meng
  • Na Ji

National Institute on Drug Abuse

  • Sarah Sarsfield
  • Yeka Aponte

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were conducted according to the United States National Institutes of Health guidelines for animal research. Procedures and protocols were approved by the Institutional Animal Care and Use Committee at Janelia Research Campus, Howard Hughes Medical Institute (protocol number: 16-147)

Reviewing Editor

  1. David Kleinfeld, University of California, San Diego, United States

Publication history

  1. Received: August 5, 2018
  2. Accepted: December 20, 2018
  3. Accepted Manuscript published: January 3, 2019 (version 1)
  4. Accepted Manuscript updated: January 4, 2019 (version 2)
  5. Version of Record published: January 18, 2019 (version 3)

Copyright

© 2019, Meng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,934
    Page views
  • 1,341
    Downloads
  • 46
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guanghan Meng
  2. Yajie Liang
  3. Sarah Sarsfield
  4. Wan-chen Jiang
  5. Rongwen Lu
  6. Joshua Tate Dudman
  7. Yeka Aponte
  8. Na Ji
(2019)
High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo
eLife 8:e40805.
https://doi.org/10.7554/eLife.40805

Further reading

    1. Neuroscience
    Liqiang Chen et al.
    Short Report

    The presynaptic protein α-synuclein (αSyn) has been suggested to be involved in the pathogenesis of Parkinson’s disease (PD). In PD, the amygdala is prone to develop insoluble αSyn aggregates, and it has been suggested that circuit dysfunction involving the amygdala contributes to the psychiatric symptoms. Yet, how αSyn aggregates affect amygdala function is unknown. In this study, we examined αSyn in glutamatergic axon terminals and the impact of its aggregation on glutamatergic transmission in the basolateral amygdala (BLA). We found that αSyn is primarily present in the vesicular glutamate transporter 1-expressing (vGluT1+) terminals in mouse BLA, which is consistent with higher levels of αSyn expression in vGluT1+ glutamatergic neurons in the cerebral cortex relative to the vGluT2+ glutamatergic neurons in the thalamus. We found that αSyn aggregation selectively decreased the cortico-BLA, but not the thalamo-BLA, transmission; and that cortico-BLA synapses displayed enhanced short-term depression upon repetitive stimulation. In addition, using confocal microscopy, we found that vGluT1+ axon terminals exhibited decreased levels of soluble αSyn, which suggests that lower levels of soluble αSyn might underlie the enhanced short-term depression of cortico-BLA synapses. In agreement with this idea, we found that cortico-BLA synaptic depression was also enhanced in αSyn knockout mice. In conclusion, both basal and dynamic cortico-BLA transmission were disrupted by abnormal aggregation of αSyn and these changes might be relevant to the perturbed cortical control of the amygdala that has been suggested to play a role in psychiatric symptoms in PD.

    1. Evolutionary Biology
    2. Neuroscience
    Elias T Lunsford et al.
    Research Article Updated

    Animals can evolve dramatic sensory functions in response to environmental constraints, but little is known about the neural mechanisms underlying these changes. The Mexican tetra, Astyanax mexicanus, is a leading model to study genetic, behavioral, and physiological evolution by comparing eyed surface populations and blind cave populations. We compared neurophysiological responses of posterior lateral line afferent neurons and motor neurons across A. mexicanus populations to reveal how shifts in sensory function may shape behavioral diversity. These studies indicate differences in intrinsic afferent signaling and gain control across populations. Elevated endogenous afferent activity identified a lower response threshold in the lateral line of blind cavefish relative to surface fish leading to increased evoked potentials during hair cell deflection in cavefish. We next measured the effect of inhibitory corollary discharges from hindbrain efferent neurons onto afferents during locomotion. We discovered that three independently derived cavefish populations have evolved persistent afferent activity during locomotion, suggesting for the first time that partial loss of function in the efferent system can be an evolutionary mechanism for neural adaptation of a vertebrate sensory system.