High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo

  1. Guanghan Meng
  2. Yajie Liang
  3. Sarah Sarsfield
  4. Wan-chen Jiang
  5. Rongwen Lu
  6. Joshua Tate Dudman
  7. Yeka Aponte
  8. Na Ji  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States
  3. National Institute on Drug Abuse, United States
  4. Johns Hopkins University School of Medicine, United States

Abstract

Optical imaging has become a powerful tool for studying brains in vivo. The opacity of adult brains makes microendoscopy, with an optical probe such as a gradient index (GRIN) lens embedded into brain tissue to provide optical relay, the method of choice for imaging neurons and neural activity in deeply buried brain structures. Incorporating a Bessel focus scanning module into two-photon fluorescence microendoscopy, we extended the excitation focus axially and improved its lateral resolution. Scanning the Bessel focus in 2D, we imaged volumes of neurons at high-throughput while resolving fine structures such as synaptic terminals. We applied this approach to the volumetric anatomical imaging of dendritic spines and axonal boutons in the mouse hippocampus, and functional imaging of GABAergic neurons in the mouse lateral hypothalamus in vivo.

Data availability

Almost all data needed to evaluate the conclusions in the paper are present in the paper or the supplementary materials; Raw image data for Figs. 2, 4 & 9 are available from Dryad, 10.5061/dryad.pr4t978

The following data sets were generated

Article and author information

Author details

  1. Guanghan Meng

    Department of Physics, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. Yajie Liang

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  3. Sarah Sarsfield

    Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Wan-chen Jiang

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  5. Rongwen Lu

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    Rongwen Lu, The Bessel focus scanning intellectual property has been licensed to Thorlabs, Inc. by HHMI.
  6. Joshua Tate Dudman

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4436-1057
  7. Yeka Aponte

    Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5967-2579
  8. Na Ji

    Department of Physics, University of California, Berkeley, Berkeley, United States
    For correspondence
    jina@berkeley.edu
    Competing interests
    Na Ji, The Bessel focus scanning intellectual property has been licensed to Thorlabs, Inc. by HHMI.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5527-1663

Funding

Howard Hughes Medical Institute

  • Guanghan Meng
  • Yajie Liang
  • Wan-chen Jiang
  • Rongwen Lu
  • Joshua Tate Dudman
  • Na Ji

National Institute of Neurological Disorders and Stroke

  • Guanghan Meng
  • Na Ji

National Institute on Drug Abuse

  • Sarah Sarsfield
  • Yeka Aponte

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were conducted according to the United States National Institutes of Health guidelines for animal research. Procedures and protocols were approved by the Institutional Animal Care and Use Committee at Janelia Research Campus, Howard Hughes Medical Institute (protocol number: 16-147)

Reviewing Editor

  1. David Kleinfeld, University of California, San Diego, United States

Publication history

  1. Received: August 5, 2018
  2. Accepted: December 20, 2018
  3. Accepted Manuscript published: January 3, 2019 (version 1)
  4. Accepted Manuscript updated: January 4, 2019 (version 2)
  5. Version of Record published: January 18, 2019 (version 3)

Copyright

© 2019, Meng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,461
    Page views
  • 1,445
    Downloads
  • 50
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guanghan Meng
  2. Yajie Liang
  3. Sarah Sarsfield
  4. Wan-chen Jiang
  5. Rongwen Lu
  6. Joshua Tate Dudman
  7. Yeka Aponte
  8. Na Ji
(2019)
High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo
eLife 8:e40805.
https://doi.org/10.7554/eLife.40805
  1. Further reading

Further reading

    1. Neuroscience
    Maria Cecilia Martinez, Camila Lidia Zold ... Mariano Andrés Belluscio
    Research Article

    The automatic initiation of actions can be highly functional. But occasionally these actions cannot be withheld and are released at inappropriate times, impulsively. Striatal activity has been shown to participate in the timing of action sequence initiation and it has been linked to impulsivity. Using a self-initiated task, we trained adult male rats to withhold a rewarded action sequence until a waiting time interval has elapsed. By analyzing neuronal activity we show that the striatal response preceding the initiation of the learned sequence is strongly modulated by the time subjects wait before eliciting the sequence. Interestingly, the modulation is steeper in adolescent rats, which show a strong prevalence of impulsive responses compared to adults. We hypothesize this anticipatory striatal activity reflects the animals’ subjective reward expectation, based on the elapsed waiting time, while the steeper waiting modulation in adolescence reflects age-related differences in temporal discounting, internal urgency states, or explore–exploit balance.

    1. Computational and Systems Biology
    2. Neuroscience
    Sergio Oscar Verduzco-Flores, Erik De Schutter
    Research Article Updated

    How dynamic interactions between nervous system regions in mammals performs online motor control remains an unsolved problem. In this paper, we show that feedback control is a simple, yet powerful way to understand the neural dynamics of sensorimotor control. We make our case using a minimal model comprising spinal cord, sensory and motor cortex, coupled by long connections that are plastic. It succeeds in learning how to perform reaching movements of a planar arm with 6 muscles in several directions from scratch. The model satisfies biological plausibility constraints, like neural implementation, transmission delays, local synaptic learning and continuous online learning. Using differential Hebbian plasticity the model can go from motor babbling to reaching arbitrary targets in less than 10 min of in silico time. Moreover, independently of the learning mechanism, properly configured feedback control has many emergent properties: neural populations in motor cortex show directional tuning and oscillatory dynamics, the spinal cord creates convergent force fields that add linearly, and movements are ataxic (as in a motor system without a cerebellum).