Attention periodically samples competing stimuli during binocular rivalry

  1. Matthew J Davidson  Is a corresponding author
  2. David Alais
  3. Jeroen JA van Boxtel  Is a corresponding author
  4. Naotsugu Tsuchiya  Is a corresponding author
  1. Monash University, Australia
  2. The University of Sydney, Australia

Abstract

The attentional sampling hypothesis suggests that attention rhythmically enhances sensory processing when attending to a single (~8 Hz), or multiple (~4 Hz) objects. Here we investigated whether attention samples sensory representations that are not part of the conscious percept during binocular rivalry. When crossmodally cued toward a conscious image, subsequent changes in consciousness occurred at ~8 Hz, consistent with rates of undivided attentional sampling. However, when attention was cued toward the suppressed image, changes in consciousness slowed to ~3.5 Hz, indicating the division of attention away from the conscious visual image. In the electroencephalogram, we found that at attentional sampling frequencies, the strength of inter-trial phase-coherence over fronto-temporal and parieto-occipital regions correlated with changes in perception. When cues were not task-relevant, these effects disappeared, confirming that perceptual changes were dependent upon the allocation of attention, and that attention can flexibly sample away from a conscious image in a task-dependent manner.

Data availability

The raw data in this study are available via the Monash University Figshare repository (https://figshare.com/projects/Crossmodal_binocular_rivalry_attention_sampling_project/56252). Analysis code is available via GitHub (https://github.com/Davidson-MJ/BRproject-attentionsampling).

Article and author information

Author details

  1. Matthew J Davidson

    School of Psychological Sciences, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, Australia
    For correspondence
    mjd070@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2088-040X
  2. David Alais

    School of Psychology, The University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Jeroen JA van Boxtel

    School of Psychological Sciences, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, Australia
    For correspondence
    jeroen.van.boxtel@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2643-0474
  4. Naotsugu Tsuchiya

    School of Psychological Sciences, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, Australia
    For correspondence
    Naotsugu.Tsuchiya@monash.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

Australian Research Council (FT120100619)

  • Naotsugu Tsuchiya

Australian Research Council (DP130100194)

  • Naotsugu Tsuchiya

Australian Research Council (DP150101731)

  • David Alais

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marisa Carrasco, New York University, United States

Ethics

Human subjects: This research involved human subjects. Participants gave their written informed consent to participate in the experiment. Experimental procedures were approved by the Monash University Human Research Ethics Committee (CF12/2542 - 2012001375)

Version history

  1. Received: August 8, 2018
  2. Accepted: November 19, 2018
  3. Accepted Manuscript published: December 3, 2018 (version 1)
  4. Version of Record published: December 18, 2018 (version 2)

Copyright

© 2018, Davidson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,733
    views
  • 393
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew J Davidson
  2. David Alais
  3. Jeroen JA van Boxtel
  4. Naotsugu Tsuchiya
(2018)
Attention periodically samples competing stimuli during binocular rivalry
eLife 7:e40868.
https://doi.org/10.7554/eLife.40868

Share this article

https://doi.org/10.7554/eLife.40868

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Neuroscience
    Flavio J Schmidig, Simon Ruch, Katharina Henke
    Research Article

    We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words’ linguistic processing raised neural complexity. The words’ semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.