Spatial control of neuronal metabolism through glucose-mediated mitochondrial transport regulation

  1. Anamika Agrawal
  2. Gulcin Pekkurnaz  Is a corresponding author
  3. Elena F Koslover  Is a corresponding author
  1. University of California, San Diego, United States

Abstract

Eukaryotic cells modulate their metabolism by organizing metabolic components in response to varying nutrient availability and energy demands. In rat axons, mitochondria respond to glucose levels by halting active transport in high glucose regions. We employ quantitative modeling to explore physical limits on spatial organization of mitochondria and localized metabolic enhancement through regulated stopping of processive motion. We delineate the role of key parameters, including cellular glucose uptake and consumption rates, that are expected to modulate mitochondrial distribution and metabolic response in spatially varying glucose conditions. Our estimates indicate that physiological brain glucose levels fall within the limited range necessary for metabolic enhancement. Hence mitochondrial localization is shown to be a plausible regulatory mechanism for neuronal metabolic flexibility in the presence of spatially heterogeneous glucose, as may occur in long processes of projection neurons. These findings provide a framework for the control of cellular bioenergetics through organelle trafficking.

Data availability

Matlab code for implementing the models described in this study has been made available on Github: https://github.com/lenafabr/mitoManuscriptCodes.Source data files for Figures 3, 4, 5, 6 and the appendix figure are provided in the manuscript and supporting files.

Article and author information

Author details

  1. Anamika Agrawal

    Department of Physics, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1213-2321
  2. Gulcin Pekkurnaz

    Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    For correspondence
    gpekkurnaz@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
  3. Elena F Koslover

    Department of Physics, University of California, San Diego, La Jolla, United States
    For correspondence
    ekoslover@physics.ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4139-9209

Funding

National Institutes of Health (R35GM128823)

  • Gulcin Pekkurnaz

Chancellor's Research Excellence Scholarship

  • Anamika Agrawal

Alfred P. Sloan Foundation (FG-2018-10394)

  • Elena F Koslover

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Agrawal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,336
    views
  • 581
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anamika Agrawal
  2. Gulcin Pekkurnaz
  3. Elena F Koslover
(2018)
Spatial control of neuronal metabolism through glucose-mediated mitochondrial transport regulation
eLife 7:e40986.
https://doi.org/10.7554/eLife.40986

Share this article

https://doi.org/10.7554/eLife.40986

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Marta Urbanska, Yan Ge ... Jochen Guck
    Research Article

    Cell mechanical properties determine many physiological functions, such as cell fate specification, migration, or circulation through vasculature. Identifying factors that govern the mechanical properties is therefore a subject of great interest. Here, we present a mechanomics approach for establishing links between single-cell mechanical phenotype changes and the genes involved in driving them. We combine mechanical characterization of cells across a variety of mouse and human systems with machine learning-based discriminative network analysis of associated transcriptomic profiles to infer a conserved network module of five genes with putative roles in cell mechanics regulation. We validate in silico that the identified gene markers are universal, trustworthy, and specific to the mechanical phenotype across the studied mouse and human systems, and demonstrate experimentally that a selected target, CAV1, changes the mechanical phenotype of cells accordingly when silenced or overexpressed. Our data-driven approach paves the way toward engineering cell mechanical properties on demand to explore their impact on physiological and pathological cell functions.

    1. Physics of Living Systems
    M Julia Maristany, Anne Aguirre Gonzalez ... Jerelle A Joseph
    Research Article

    Proteins containing prion-like low complexity domains (PLDs) are common drivers of the formation of biomolecular condensates and are prone to misregulation due to amino acid mutations. Here, we exploit the accuracy of our residue-resolution coarse-grained model, Mpipi, to quantify the impact of amino acid mutations on the stability of 140 PLD mutants from six proteins (hnRNPA1, TDP43, FUS, EWSR1, RBM14, and TIA1). Our simulations reveal the existence of scaling laws that quantify the range of change in the critical solution temperature of PLDs as a function of the number and type of amino acid sequence mutations. These rules are consistent with the physicochemical properties of the mutations and extend across the entire family tested, suggesting that scaling laws can be used as tools to predict changes in the stability of PLD condensates. Our work offers a quantitative lens into how the emergent behavior of PLD solutions vary in response to physicochemical changes of single PLD molecules.