Abstract

In stereotyped neuronal networks, synaptic connectivity is dictated by cell surface proteins, which assign unique identities to neurons, and physically mediate axon guidance and synapse targeting. We recently identified two groups of immunoglobulin superfamily proteins in Drosophila, Dprs and DIPs, as strong candidates for synapse targeting functions. Here, we uncover the molecular basis of specificity in Dpr–DIP mediated cellular adhesions and neuronal connectivity. First, we present five crystal structures of Dpr–DIP and DIP–DIP complexes, highlighting the evolutionary and structural origins of diversification in Dpr and DIP proteins and their interactions. We further show that structures can be used to rationally engineer receptors with novel specificities or modified affinities, which can be used to study specific circuits that require Dpr–DIP interactions to help establish connectivity. We investigate one pair, engineered Dpr10 and DIP-α, for function in the neuromuscular circuit in flies, and reveal roles for homophilic and heterophilic binding in wiring.

Data availability

Structural models and diffraction data have been deposited in PDB (accession numbers: 6NRQ, 6NRR, 6NRX, 6NRW, and 6NS1).

The following data sets were generated

Article and author information

Author details

  1. Shouqiang Cheng

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. James Ashley

    Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Justyna D Kurleto

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Meike Lobb-Rabe

    Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yeonhee Jenny Park

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Robert A Carrillo

    Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2067-9861
  7. Engin Özkan

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    For correspondence
    eozkan@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0263-6729

Funding

National Institute of Neurological Disorders and Stroke (R01 NS097161)

  • Engin Özkan

Esther A. and Joseph Klingenstein Fund

  • Engin Özkan

National Institute of Neurological Disorders and Stroke (K01 NS102342)

  • Robert A Carrillo

Alfred P. Sloan Foundation

  • Engin Özkan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Cheng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,645
    views
  • 457
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shouqiang Cheng
  2. James Ashley
  3. Justyna D Kurleto
  4. Meike Lobb-Rabe
  5. Yeonhee Jenny Park
  6. Robert A Carrillo
  7. Engin Özkan
(2019)
Molecular basis of synaptic specificity by immunoglobulin superfamily receptors in Drosophila
eLife 8:e41028.
https://doi.org/10.7554/eLife.41028

Share this article

https://doi.org/10.7554/eLife.41028

Further reading

    1. Neuroscience
    Mi-Seon Kong, Ethan Ancell ... Larry S Zweifel
    Research Article

    The central amygdala (CeA) has emerged as an important brain region for regulating both negative (fear and anxiety) and positive (reward) affective behaviors. The CeA has been proposed to encode affective information in the form of valence (whether the stimulus is good or bad) or salience (how significant is the stimulus), but the extent to which these two types of stimulus representation occur in the CeA is not known. Here, we used single cell calcium imaging in mice during appetitive and aversive conditioning and found that majority of CeA neurons (~65%) encode the valence of the unconditioned stimulus (US) with a smaller subset of cells (~15%) encoding the salience of the US. Valence and salience encoding of the conditioned stimulus (CS) was also observed, albeit to a lesser extent. These findings show that the CeA is a site of convergence for encoding oppositely valenced US information.

    1. Neuroscience
    Sharon Inberg, Yael Iosilevskii ... Benjamin Podbilewicz
    Research Article

    Dendrites are crucial for receiving information into neurons. Sensory experience affects the structure of these tree-like neurites, which, it is assumed, modifies neuronal function, yet the evidence is scarce, and the mechanisms are unknown. To study whether sensory experience affects dendritic morphology, we use the Caenorhabditis elegans' arborized nociceptor PVD neurons, under natural mechanical stimulation induced by physical contacts between individuals. We found that mechanosensory signals induced by conspecifics and by glass beads affect the dendritic structure of the PVD. Moreover, developmentally isolated animals show a decrease in their ability to respond to harsh touch. The structural and behavioral plasticity following sensory deprivation are functionally independent of each other and are mediated by an array of evolutionarily conserved mechanosensory amiloride-sensitive epithelial sodium channels (degenerins). Calcium imaging of the PVD neurons in a micromechanical device revealed that controlled mechanical stimulation of the body wall produces similar calcium dynamics in both isolated and crowded animals. Our genetic results, supported by optogenetic, behavioral, and pharmacological evidence, suggest an activity-dependent homeostatic mechanism for dendritic structural plasticity, that in parallel controls escape response to noxious mechanosensory stimuli.