JNK-dependent cell cycle stalling in G2 promotes survival and senescence-like phenotypes in tissue stress

  1. Andrea Cosolo
  2. Janhvi Jaiswal
  3. Gábor Csordás
  4. Isabelle Grass
  5. Mirka Uhlirova
  6. Anne-Kathrin Classen  Is a corresponding author
  1. Albert Ludwigs University Freiburg, Germany
  2. University of Cologne, Germany

Abstract

The restoration of homeostasis after tissue damage relies on proper spatial-temporal control of damage-induced apoptosis and compensatory proliferation. In Drosophila imaginal discs these processes are coordinated by the stress response pathway JNK. We demonstrate that JNK signaling induces a dose-dependent extension of G2 in tissue damage and tumors, resulting in either transient stalling or a prolonged but reversible cell cycle arrest. G2-stalling is mediated by downregulation of the G2/M-specific phosphatase String(Stg)/Cdc25. Ectopic expression of stg is sufficient to suppress G2-stalling and reveals roles for stalling in survival, proliferation and paracrine signaling. G2-stalling protects cells from JNK-induced apoptosis, but under chronic conditions, reduces proliferative potential of JNK-signaling cells while promoting non-autonomous proliferation. Thus, transient cell cycle stalling in G2 has key roles in wound healing but becomes detrimental upon chronic JNK overstimulation, with important implications for chronic wound healing pathologies or tumorigenic transformation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Andrea Cosolo

    Center for Biological Systems Analysis, Albert Ludwigs University Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3417-0713
  2. Janhvi Jaiswal

    Center for Biological Systems Analysis, Albert Ludwigs University Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Gábor Csordás

    Institute for Genetics, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Isabelle Grass

    Center for Biological Systems Analysis, Albert Ludwigs University Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Mirka Uhlirova

    Institute for Genetics, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5735-8287
  6. Anne-Kathrin Classen

    Center for Biological Systems Analysis, Albert Ludwigs University Freiburg, Freiburg, Germany
    For correspondence
    anne.classen@zbsa.uni-freiburg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5157-0749

Funding

Deutsche Forschungsgemeinschaft (CL490-1/1)

  • Anne-Kathrin Classen

Boehringer Ingelheim Stiftung (Plus3 Programme)

  • Anne-Kathrin Classen

Deutsche Forschungsgemeinschaft (EXC-2189 - Project ID 390939984)

  • Anne-Kathrin Classen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Cosolo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,483
    views
  • 674
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrea Cosolo
  2. Janhvi Jaiswal
  3. Gábor Csordás
  4. Isabelle Grass
  5. Mirka Uhlirova
  6. Anne-Kathrin Classen
(2019)
JNK-dependent cell cycle stalling in G2 promotes survival and senescence-like phenotypes in tissue stress
eLife 8:e41036.
https://doi.org/10.7554/eLife.41036

Share this article

https://doi.org/10.7554/eLife.41036

Further reading

    1. Cell Biology
    Dharmendra Kumar Nath, Subash Dhakal, Youngseok Lee
    Research Advance

    Understanding how the brain controls nutrient storage is pivotal. Transient receptor potential (TRP) channels are conserved from insects to humans. They serve in detecting environmental shifts and in acting as internal sensors. Previously, we demonstrated the role of TRPγ in nutrient-sensing behavior (Dhakal et al., 2022). Here, we found that a TRPγ mutant exhibited in Drosophila melanogaster is required for maintaining normal lipid and protein levels. In animals, lipogenesis and lipolysis control lipid levels in response to food availability. Lipids are mostly stored as triacylglycerol in the fat bodies (FBs) of D. melanogaster. Interestingly, trpγ deficient mutants exhibited elevated TAG levels and our genetic data indicated that Dh44 neurons are indispensable for normal lipid storage but not protein storage. The trpγ mutants also exhibited reduced starvation resistance, which was attributed to insufficient lipolysis in the FBs. This could be mitigated by administering lipase or metformin orally, indicating a potential treatment pathway. Gene expression analysis indicated that trpγ knockout downregulated brummer, a key lipolytic gene, resulting in chronic lipolytic deficits in the gut and other fat tissues. The study also highlighted the role of specific proteins, including neuropeptide DH44 and its receptor DH44R2 in lipid regulation. Our findings provide insight into the broader question of how the brain and gut regulate nutrient storage.

    1. Cell Biology
    2. Immunology and Inflammation
    Mykhailo Vladymyrov, Luca Marchetti ... Britta Engelhardt
    Tools and Resources

    The endothelial blood-brain barrier (BBB) strictly controls immune cell trafficking into the central nervous system (CNS). In neuroinflammatory diseases such as multiple sclerosis, this tight control is, however, disturbed, leading to immune cell infiltration into the CNS. The development of in vitro models of the BBB combined with microfluidic devices has advanced our understanding of the cellular and molecular mechanisms mediating the multistep T-cell extravasation across the BBB. A major bottleneck of these in vitro studies is the absence of a robust and automated pipeline suitable for analyzing and quantifying the sequential interaction steps of different immune cell subsets with the BBB under physiological flow in vitro. Here, we present the under-flow migration tracker (UFMTrack) framework for studying immune cell interactions with endothelial monolayers under physiological flow. We then showcase a pipeline built based on it to study the entire multistep extravasation cascade of immune cells across brain microvascular endothelial cells under physiological flow in vitro. UFMTrack achieves 90% track reconstruction efficiency and allows for scaling due to the reduction of the analysis cost and by eliminating experimenter bias. This allowed for an in-depth analysis of all behavioral regimes involved in the multistep immune cell extravasation cascade. The study summarizes how UFMTrack can be employed to delineate the interactions of CD4+ and CD8+ T cells with the BBB under physiological flow. We also demonstrate its applicability to the other BBB models, showcasing broader applicability of the developed framework to a range of immune cell-endothelial monolayer interaction studies. The UFMTrack framework along with the generated datasets is publicly available in the corresponding repositories.