1. Computational and Systems Biology
  2. Physics of Living Systems
Download icon

Optogenetics enables real-time spatiotemporal control over spiral wave dynamics in an excitable cardiac system

  1. Rupamanjari Majumder
  2. Iolanda Feola
  3. Alexander S Teplenin
  4. Antoine A F de Vries
  5. Alexander V Panfilov  Is a corresponding author
  6. Daniel A Pijnappels  Is a corresponding author
  1. Leiden University Medical Center, Netherlands
  2. Ghent University, Belgium
Research Article
  • Cited 4
  • Views 1,336
  • Annotations
Cite this article as: eLife 2018;7:e41076 doi: 10.7554/eLife.41076

Abstract

Propagation of non-linear waves is key to the functioning of diverse biological systems. Such waves can organize into spirals, rotating around a core, whose properties determine the overall wave dynamics. Theoretically, manipulation of a spiral wave core should lead to full spatiotemporal control over its dynamics. However, this theory lacks supportive evidence (even at a conceptual level), making it thus a long-standing hypothesis. Here, we propose a new phenomenological concept that involves artificially dragging spiral waves by their cores, to prove the afore-mentioned hypothesis in silico, with subsequent in vitro validation in optogenetically-modified monolayers of rat atrial cardiomyocytes. We thereby connect previously established, but unrelated concepts of spiral wave attraction, anchoring and unpinning to demonstrate that core manipulation, through controlled displacement of heterogeneities in excitable media, allows forced movement of spiral waves along pre-defined trajectories. Consequently, we impose real-time spatiotemporal control over spiral wave dynamics in a biological system.

Article and author information

Author details

  1. Rupamanjari Majumder

    Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Iolanda Feola

    Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander S Teplenin

    Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7841-376X
  4. Antoine A F de Vries

    Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Alexander V Panfilov

    Department of Physics and Astronomy, Ghent University, Ghent, Belgium
    For correspondence
    Alexander.Panfilov@ugent.be
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel A Pijnappels

    Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
    For correspondence
    D.A.Pijnappels@lumc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6731-4125

Funding

ZonMw (VIDI)

  • Daniel A Pijnappels

H2020 European Research Council (Starting grant)

  • Daniel A Pijnappels

Ammodo

  • Antoine A F de Vries
  • Daniel A Pijnappels

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were reviewed and approved by the Animal Experiments Committee of the Leiden University Medical Center (AVD 116002017818) and performed in accordance with the recommendations for animal experiments issued by the European Commission directive 2010/63.

Reviewing Editor

  1. Leon Glass, McGill University, Canada

Publication history

  1. Received: August 13, 2018
  2. Accepted: September 14, 2018
  3. Accepted Manuscript published: September 27, 2018 (version 1)
  4. Version of Record published: October 16, 2018 (version 2)

Copyright

© 2018, Majumder et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,336
    Page views
  • 213
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Andreas Hofmann et al.
    Research Article Updated
    1. Computational and Systems Biology
    2. Neuroscience
    Tung D Phan et al.
    Research Article Updated