Optogenetics enables real-time spatiotemporal control over spiral wave dynamics in an excitable cardiac system
Abstract
Propagation of non-linear waves is key to the functioning of diverse biological systems. Such waves can organize into spirals, rotating around a core, whose properties determine the overall wave dynamics. Theoretically, manipulation of a spiral wave core should lead to full spatiotemporal control over its dynamics. However, this theory lacks supportive evidence (even at a conceptual level), making it thus a long-standing hypothesis. Here, we propose a new phenomenological concept that involves artificially dragging spiral waves by their cores, to prove the afore-mentioned hypothesis in silico, with subsequent in vitro validation in optogenetically-modified monolayers of rat atrial cardiomyocytes. We thereby connect previously established, but unrelated concepts of spiral wave attraction, anchoring and unpinning to demonstrate that core manipulation, through controlled displacement of heterogeneities in excitable media, allows forced movement of spiral waves along pre-defined trajectories. Consequently, we impose real-time spatiotemporal control over spiral wave dynamics in a biological system.
Data availability
All data and code generated or analysed during this study are included in the manuscript and supporting files.
Article and author information
Author details
Funding
ZonMw (VIDI)
- Daniel A Pijnappels
H2020 European Research Council (Starting grant)
- Daniel A Pijnappels
Ammodo
- Antoine A F de Vries
- Daniel A Pijnappels
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All animal experiments were reviewed and approved by the Animal Experiments Committee of the Leiden University Medical Center (AVD 116002017818) and performed in accordance with the recommendations for animal experiments issued by the European Commission directive 2010/63.
Copyright
© 2018, Majumder et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,558
- views
-
- 371
- downloads
-
- 56
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.