Transcriptomic analysis reveals reduced transcriptional activity in the malaria parasite Plasmodium cynomolgi during progression into dormancy

Abstract

Relapses of Plasmodium dormant liver hypnozoites compromise malaria eradication efforts. New radical cure drugs are urgently needed, yet the vast gap in knowledge of hypnozoite biology impedes drug discovery. We previously unraveled the transcriptome of 6 to 7 day-old P. cynomolgi liver stages, highlighting pathways associated with hypnozoite dormancy (Voorberg-van der Wel, 2017). We now extend these findings by transcriptome profiling of 9 to 10 day-old liver stage parasites, thus revealing for the first time the maturation of the dormant stage over time. Although progression of dormancy leads to a 10-fold decrease in transcription and expression of only 840 genes, including genes associated with housekeeping functions, we show that pathways involved in quiescence, energy metabolism and maintenance of genome integrity remain the prevalent pathways active in mature hypnozoites.

Data availability

The raw RNA-sequencing reads are available in the NCBI Short Read Archive (https://www.ncbi.nlm.nih.gov/sra) under accession number SRP096160.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Nicole L Bertschi

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
    Competing interests
    Nicole L Bertschi, employed by and/or shareholders of Novartis Pharma AG.
  2. Annemarie Voorberg-van der Wel

    Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9403-0515
  3. Anne-Marie Zeeman

    Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
    Competing interests
    No competing interests declared.
  4. Sven Schuierer

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
    Competing interests
    Sven Schuierer, employed by and/or shareholders of Novartis Pharma AG.
  5. Florian Nigsch

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
    Competing interests
    Florian Nigsch, employed by and/or shareholders of Novartis Pharma AG.
  6. Walter Carbone

    Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
    Competing interests
    Walter Carbone, employed by and/or shareholders of Novartis Pharma AG.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6150-8295
  7. Judith Knehr

    Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
    Competing interests
    Judith Knehr, employed by and/or shareholders of Novartis Pharma AG.
  8. Devendra Kumar Gupta

    Novartis Institute for Tropical Diseases, Emeryville, United States
    Competing interests
    Devendra Kumar Gupta, employed by and/or shareholders of Novartis Pharma AG.
  9. Sam O Hofman

    Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
    Competing interests
    No competing interests declared.
  10. Nicole van der Werff

    Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
    Competing interests
    No competing interests declared.
  11. Ivonne Nieuwenhuis

    Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
    Competing interests
    No competing interests declared.
  12. Els Klooster

    Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
    Competing interests
    No competing interests declared.
  13. Bart W Faber

    Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
    Competing interests
    No competing interests declared.
  14. Erika L Flannery

    Novartis Institute for Tropical Diseases, Emeryville, United States
    Competing interests
    Erika L Flannery, employed by and/or shareholders of Novartis Pharma AG.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0665-7954
  15. Sebastian Mikolajczak

    Novartis Institute for Tropical Diseases, Emeryville, United States
    Competing interests
    Sebastian Mikolajczak, employed by and/or shareholders of Novartis Pharma AG.
  16. Binesh Shrestha

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
    Competing interests
    Binesh Shrestha, employed by and/or shareholders of Novartis Pharma AG.
  17. Martin Beibel

    Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
    Competing interests
    Martin Beibel, employed by and/or shareholders of Novartis Pharma AG.
  18. Tewis Bouwmeester

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
    Competing interests
    Tewis Bouwmeester, employed by and/or shareholders of Novartis Pharma AG.
  19. Niwat Kangwanrangsan

    Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
  20. Jetsumon Sattabongkot

    Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3938-4588
  21. Thierry Tidiane Diagana

    Novartis Institute for Tropical Diseases, Emeryville, United States
    Competing interests
    Thierry Tidiane Diagana, employed by and/or shareholders of Novartis Pharma AG.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8520-5683
  22. Clemens H M Kocken

    Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
    For correspondence
    kocken@bprc.nl
    Competing interests
    No competing interests declared.
  23. Guglielmo Roma

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
    For correspondence
    guglielmo.roma@novartis.com
    Competing interests
    Guglielmo Roma, employed by and shareholders of Novartis Pharma AG.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8020-4219

Funding

Bill and Melinda Gates Foundation

  • Thierry Tidiane Diagana
  • Clemens H M Kocken
  • Guglielmo Roma

Wellcome

  • Thierry Tidiane Diagana
  • Clemens H M Kocken

Medicines for Malaria Venture

  • Thierry Tidiane Diagana
  • Clemens H M Kocken

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Nonhuman primates were used because no other models (in vitro or in vivo) were suitable for the aims of this project. The research protocol was approved by the local independent ethical committee conform Dutch law (BPRC Dier Experimenten Commissie, DEC, agreement number #708). Details are described by Voorberg-van der Wel [4].

Copyright

© 2018, Bertschi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,366
    views
  • 452
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.41081

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Iti Mehta, Jacob B Hogins ... Larry Reitzer
    Research Article

    Polyamines are biologically ubiquitous cations that bind to nucleic acids, ribosomes, and phospholipids and, thereby, modulate numerous processes, including surface motility in Escherichia coli. We characterized the metabolic pathways that contribute to polyamine-dependent control of surface motility in the commonly used strain W3110 and the transcriptome of a mutant lacking a putrescine synthetic pathway that was required for surface motility. Genetic analysis showed that surface motility required type 1 pili, the simultaneous presence of two independent putrescine anabolic pathways, and modulation by putrescine transport and catabolism. An immunological assay for FimA—the major pili subunit, reverse transcription quantitative PCR of fimA, and transmission electron microscopy confirmed that pili synthesis required putrescine. Comparative RNAseq analysis of a wild type and ΔspeB mutant which exhibits impaired pili synthesis showed that the latter had fewer transcripts for pili structural genes and for fimB which codes for the phase variation recombinase that orients the fim operon promoter in the ON phase, although loss of speB did not affect the promoter orientation. Results from the RNAseq analysis also suggested (a) changes in transcripts for several transcription factor genes that affect fim operon expression, (b) compensatory mechanisms for low putrescine which implies a putrescine homeostatic network, and (c) decreased transcripts of genes for oxidative energy metabolism and iron transport which a previous genetic analysis suggests may be sufficient to account for the pili defect in putrescine synthesis mutants. We conclude that pili synthesis requires putrescine and putrescine concentration is controlled by a complex homeostatic network that includes the genes of oxidative energy metabolism.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Ainhoa Arbués, Sarah Schmidiger ... Damien Portevin
    Research Article

    The members of the Mycobacterium tuberculosis complex (MTBC) causing human tuberculosis comprise 10 phylogenetic lineages that differ in their geographical distribution. The human consequences of this phylogenetic diversity remain poorly understood. Here, we assessed the phenotypic properties at the host-pathogen interface of 14 clinical strains representing five major MTBC lineages. Using a human in vitro granuloma model combined with bacterial load assessment, microscopy, flow cytometry, and multiplexed-bead arrays, we observed considerable intra-lineage diversity. Yet, modern lineages were overall associated with increased growth rate and more pronounced granulomatous responses. MTBC lineages exhibited distinct propensities to accumulate triglyceride lipid droplets—a phenotype associated with dormancy—that was particularly pronounced in lineage 2 and reduced in lineage 3 strains. The most favorable granuloma responses were associated with strong CD4 and CD8 T cell activation as well as inflammatory responses mediated by CXCL9, granzyme B, and TNF. Both of which showed consistent negative correlation with bacterial proliferation across genetically distant MTBC strains of different lineages. Taken together, our data indicate that different virulence strategies and protective immune traits associate with MTBC genetic diversity at lineage and strain level.