Activation mechanism of ATP-sensitive K+ channels explored with real-time nucleotide binding
Abstract
The response of ATP-sensitive K+ channels (KATP) to cellular metabolism is coordinated by three classes of nucleotide binding site (NBS). We used a novel approach involving labeling of intact channels in a native, membrane environment with a non-canonical fluorescent amino acid and measurement (using FRET with fluorescent nucleotides) of steady-state and time-resolved nucleotide binding to dissect the role of NBS2 of the accessory SUR1 subunit of KATP in channel gating. Binding to NBS2 was Mg2+-independent, but Mg was required to trigger a conformational change in SUR1. Mutation of a lysine (K1384A) in NBS2 that coordinates bound nucleotides increased the EC50 for trinitrophenyl-ADP binding to NBS2, but only in the presence of Mg2+, indicating that this mutation disrupts the ligand-induced conformational change. Comparison of nucleotide-binding with ionic currents suggests a model in which each nucleotide binding event to NBS2 of SUR1 is independent and promotes KATP activation by the same amount.
Data availability
Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.6mh0sv3
-
Data from: Activation mechanism of ATP-sensitive K+ channels explored with real-time nucleotide binding--RevisedDryad Digital Repository, doi.org/10.5061/dryad.6mh0sv3.
Article and author information
Author details
Funding
Biotechnology and Biological Sciences Research Council (BB/R002517/1)
- Michael Puljung
- Frances Ashcroft
H2020 European Research Council (322620)
- Michael Puljung
- Natascia Vedovato
- Frances Ashcroft
Wellcome Trust Oxion Graduate Program
- Samuel Usher
John Fell Fund, University of Oxford
- Michael Puljung
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2019, Puljung et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,160
- views
-
- 373
- downloads
-
- 31
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.