1. Biochemistry and Chemical Biology
  2. Structural Biology and Molecular Biophysics
Download icon

The conserved aspartate ring of MCU mediates MICU1 binding and regulation in the mitochondrial calcium uniporter complex

  1. Charles B Phillips
  2. Chen-Wei Tsai
  3. Ming-Feng Tsai  Is a corresponding author
  1. Brandeis University, United States
Research Article
  • Cited 20
  • Views 1,696
  • Annotations
Cite this article as: eLife 2019;8:e41112 doi: 10.7554/eLife.41112

Abstract

The mitochondrial calcium uniporter is a Ca2+ channel that regulates intracellular Ca2+ signaling, oxidative phosphorylation, and apoptosis. It contains the pore-forming MCU protein, which possesses a DIME sequence thought to form a Ca2+ selectivity filter, and also regulatory EMRE, MICU1, and MICU2 subunits. To properly carry out physiological functions, the uniporter must stay closed in resting conditions, becoming open only when stimulated by intracellular Ca2+ signals. This Ca2+-dependent activation, known to be mediated by MICU subunits, is not well understood. Here, we demonstrate that the DIME-aspartate mediates a Ca2+-modulated electrostatic interaction with MICU1, forming an MICU1 contact interface with a nearby Ser residue at the cytoplasmic entrance of the MCU pore. A mutagenesis screen of MICU1 identifies two highly-conserved Arg residues that might contact the DIME-Asp. Perturbing MCU-MICU1 interactions elicits unregulated, constitutive Ca2+ flux into mitochondria. These results indicate that MICU1 confers Ca2+-dependent gating of the uniporter by blocking/unblocking MCU.

Article and author information

Author details

  1. Charles B Phillips

    Department of Biochemistry, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Chen-Wei Tsai

    Department of Biochemistry, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ming-Feng Tsai

    Department of Biochemistry, Brandeis University, Waltham, United States
    For correspondence
    mftsai@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4277-1885

Funding

Howard Hughes Medical Institute

  • Ming-Feng Tsai

National Institute of General Medical Sciences (R01-GM129345)

  • Chen-Wei Tsai
  • Ming-Feng Tsai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. The funders pay for the authors' salary and other research expenses.

Reviewing Editor

  1. Baron Chanda, University of Wisconsin-Madison, United States

Publication history

  1. Received: August 14, 2018
  2. Accepted: January 7, 2019
  3. Accepted Manuscript published: January 14, 2019 (version 1)
  4. Accepted Manuscript updated: January 15, 2019 (version 2)
  5. Version of Record published: January 25, 2019 (version 3)

Copyright

© 2019, Phillips et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,696
    Page views
  • 300
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Yasmin ElMaghloob et al.
    Research Article

    The ADP-ribosylation factor-like 3 (ARL3) is a ciliopathy G-protein which regulates the ciliary trafficking of several lipid-modified proteins. ARL3 is activated by its guanine exchange factor (GEF) ARL13B via an unresolved mechanism. BART is described as an ARL3 effector which has also been implicated in ciliopathies, although the role of its ARL3 interaction is unknown. Here we show that, at physiological GTP:GDP levels, human ARL3GDP is weakly activated by ARL13B. However, BART interacts with nucleotide-free ARL3 and, in concert with ARL13B, efficiently activates ARL3. In addition, BART binds ARL3GTP and inhibits GTP dissociation, thereby stabilising the active G-protein; the binding of ARL3 effectors then releases BART. Finally, using live cell imaging, we show that BART accesses the primary cilium and colocalises with ARL13B. We propose a model wherein BART functions as a bona fide co-GEF for ARL3 and maintains the active ARL3GTP, until it is recycled by ARL3 effectors.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Manickam Gurusaran, Owen Richard Davies
    Research Article Updated

    The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex mechanically couples cytoskeletal and nuclear components across the nuclear envelope to fulfil a myriad of cellular functions, including nuclear shape and positioning, hearing, and meiotic chromosome movements. The canonical model is that 3:3 interactions between SUN and KASH proteins underlie the nucleocytoskeletal linkages provided by the LINC complex. Here, we provide crystallographic and biophysical evidence that SUN-KASH is a constitutive 6:6 complex in which two constituent 3:3 complexes interact head-to-head. A common SUN-KASH topology is achieved through structurally diverse 6:6 interaction mechanisms by distinct KASH proteins, including zinc-coordination by Nesprin-4. The SUN-KASH 6:6 interface provides a molecular mechanism for the establishment of integrative and distributive connections between 3:3 structures within a branched LINC complex network. In this model, SUN-KASH 6:6 complexes act as nodes for force distribution and integration between adjacent SUN and KASH molecules, enabling the coordinated transduction of large forces across the nuclear envelope.