Human-specific ARHGAP11B induces hallmarks of neocortical expansion in developing ferret neocortex
Abstract
The evolutionary increase in size and complexity of the primate neocortex is thought to underlie the higher cognitive abilities of humans. ARHGAP11B is a human-specific gene that, based on its expression pattern in fetal human neocortex and progenitor effects in embryonic mouse neocortex, has been proposed to have a key function in the evolutionary expansion of the neocortex. Here, we study the effects of ARHGAP11B expression in the developing neocortex of the gyrencephalic ferret. In contrast to its effects in mouse, ARHGAP11B markedly increases proliferative basal radial glia, a progenitor cell type thought to be instrumental for neocortical expansion, and results in extension of the neurogenic period and an increase in upper-layer neurons. Consequently, the postnatal ferret neocortex exhibits increased neuron density in the upper cortical layers and expands in both the radial and tangential dimensions. Thus, human-specific ARHGAP11B can elicit hallmarks of neocortical expansion in the developing ferret neocortex.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files.
Article and author information
Author details
Funding
European Molecular Biology Organization (ALTF 861-2013)
- Nereo Kalebic
Deutsche Forschungsgemeinschaft (SFB 655 A2)
- Wieland B Huttner
European Research Council (250197)
- Wieland B Huttner
Max-Planck-Gesellschaft
- Wieland B Huttner
Christiane-Nüsslein-Volhard Foundation
- Mareike Albert
Erasmus+ traineeship program
- Carlotta Gilardi
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All experimental procedures were conducted in agreement with the German Animal Welfare Legislation after approval by the Landesdirektion Sachsen (licences TVV 2/2015 and TVV 21/2017).
Copyright
© 2018, Kalebic et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,276
- views
-
- 779
- downloads
-
- 94
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.