1. Computational and Systems Biology
  2. Neuroscience
Download icon

Subunit exchange enhances information retention by CaMKII in dendritic spines

  1. Dilawar Singh
  2. Upinder Singh Bhalla  Is a corresponding author
  1. Tata Institute of Fundamental Research, India
Research Article
  • Cited 2
  • Views 1,037
  • Annotations
Cite this article as: eLife 2018;7:e41412 doi: 10.7554/eLife.41412

Abstract

Molecular bistables are strong candidates for long-term information storage, for example, in synaptic plasticity. Calcium/calmodulin dependent protein Kinase II (CaMKII) is a highly expressed synaptic protein which has been proposed to form a molecular bistable switch capable of maintaining its state for years despite protein turnover and stochastic noise. It has recently been shown that CaMKII holoenzymes exchange subunits among themselves. Here we used computational methods to analyze the effect of subunit exchange on the CaMKII pathway in the presence of diffusion in two different micro-environments, the post synaptic density (PSD) and spine cytosol. We show that CaMKII exhibits multiple timescales of activity due to subunit exchange. Further, subunit exchange enhances information retention by CaMKII both by improving the stability of its switching in the PSD, and by slowing the decay of its activity in the spine cytosol. The existence of diverse timescales in the synapse has important theoretical implications for memory storage in networks.

Article and author information

Author details

  1. Dilawar Singh

    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4645-3211
  2. Upinder Singh Bhalla

    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    For correspondence
    bhalla@ncbs.res.in
    Competing interests
    Upinder Singh Bhalla, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1722-5188

Funding

Science and Engineering Research Board (JC Bose Fellowship #SB/S2/JCB-023/2016)

  • Upinder Singh Bhalla

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Leslie C Griffith, Brandeis University, United States

Publication history

  1. Received: August 25, 2018
  2. Accepted: November 9, 2018
  3. Accepted Manuscript published: November 12, 2018 (version 1)
  4. Version of Record published: December 7, 2018 (version 2)

Copyright

© 2018, Singh & Bhalla

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,037
    Page views
  • 163
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    Darwin Y Fu, Jacob J Hughey
    Feature Article
    1. Computational and Systems Biology
    2. Plant Biology
    Mary-Ann Blätke, Andrea Bräutigam
    Research Article