Translesion polymerase kappa-dependent DNA synthesis underlies replication fork recovery

  1. Peter Tonzi
  2. Yandong Yin
  3. Chelsea Wei Ting Lee
  4. Eli Rothenberg
  5. Tony T Huang  Is a corresponding author
  1. New York University School of Medicine, United States

Abstract

DNA replication stress is often defined by the slowing or stalling of replication fork progression leading to local or global DNA synthesis inhibition. Failure to resolve replication stress in a timely manner contribute towards cell cycle defects, genome instability and human disease; however, the mechanism for fork recovery remains poorly defined. Here we show that the translesion DNA polymerase (Pol) kappa, a DinB orthologue, has a unique role in both protecting and restarting stalled replication forks under conditions of nucleotide deprivation. Importantly, Pol kappa-mediated DNA synthesis during hydroxyurea (HU)-dependent fork restart is regulated by both the Fanconi Anemia (FA) pathway and PCNA polyubiquitination. Loss of Pol kappa prevents timely rescue of stalled replication forks, leading to replication-associated genomic instability, and a p53-dependent cell cycle defect. Taken together, our results identify a previously unanticipated role for Pol kappa in promoting DNA synthesis and replication stress recovery at sites of stalled forks.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Peter Tonzi

    Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yandong Yin

    Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2499-871X
  3. Chelsea Wei Ting Lee

    Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Eli Rothenberg

    Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Tony T Huang

    Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
    For correspondence
    tony.huang@nyumc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9291-5002

Funding

National Institutes of Health (ES025166)

  • Peter Tonzi

National Institutes of Health (GM108119)

  • Yandong Yin
  • Chelsea Wei Ting Lee

American Cancer Society (RSG-16-241-01-DMC)

  • Yandong Yin
  • Chelsea Wei Ting Lee

V Foundation for Cancer Research

  • Eli Rothenberg
  • Tony T Huang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Tonzi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,351
    views
  • 598
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peter Tonzi
  2. Yandong Yin
  3. Chelsea Wei Ting Lee
  4. Eli Rothenberg
  5. Tony T Huang
(2018)
Translesion polymerase kappa-dependent DNA synthesis underlies replication fork recovery
eLife 7:e41426.
https://doi.org/10.7554/eLife.41426

Share this article

https://doi.org/10.7554/eLife.41426

Further reading

    1. Chromosomes and Gene Expression
    2. Evolutionary Biology
    Gülnihal Kavaklioglu, Alexandra Podhornik ... Christian Seiser
    Research Article

    Repression of retrotransposition is crucial for the successful fitness of a mammalian organism. The domesticated transposon protein L1TD1, derived from LINE-1 (L1) ORF1p, is an RNA-binding protein that is expressed only in some cancers and early embryogenesis. In human embryonic stem cells, it is found to be essential for maintaining pluripotency. In cancer, L1TD1 expression is highly correlative with malignancy progression and as such considered a potential prognostic factor for tumors. However, its molecular role in cancer remains largely unknown. Our findings reveal that DNA hypomethylation induces the expression of L1TD1 in HAP1 human tumor cells. L1TD1 depletion significantly modulates both the proteome and transcriptome and thereby reduces cell viability. Notably, L1TD1 associates with L1 transcripts and interacts with L1 ORF1p protein, thereby facilitating L1 retrotransposition. Our data suggest that L1TD1 collaborates with its ancestral L1 ORF1p as an RNA chaperone, ensuring the efficient retrotransposition of L1 retrotransposons, rather than directly impacting the abundance of L1TD1 targets. In this way, L1TD1 might have an important role not only during early development but also in tumorigenesis.

    1. Chromosomes and Gene Expression
    Shihui Chen, Carolyn Marie Phillips
    Research Article

    RNA interference (RNAi) is a conserved pathway that utilizes Argonaute proteins and their associated small RNAs to exert gene regulatory function on complementary transcripts. While the majority of germline-expressed RNAi proteins reside in perinuclear germ granules, it is unknown whether and how RNAi pathways are spatially organized in other cell types. Here, we find that the small RNA biogenesis machinery is spatially and temporally organized during Caenorhabditis elegans embryogenesis. Specifically, the RNAi factor, SIMR-1, forms visible concentrates during mid-embryogenesis that contain an RNA-dependent RNA polymerase, a poly-UG polymerase, and the unloaded nuclear Argonaute protein, NRDE-3. Curiously, coincident with the appearance of the SIMR granules, the small RNAs bound to NRDE-3 switch from predominantly CSR-class 22G-RNAs to ERGO-dependent 22G-RNAs. NRDE-3 binds ERGO-dependent 22G-RNAs in the somatic cells of larvae and adults to silence ERGO-target genes; here we further demonstrate that NRDE-3-bound, CSR-class 22G-RNAs repress transcription in oocytes. Thus, our study defines two separable roles for NRDE-3, targeting germline-expressed genes during oogenesis to promote global transcriptional repression, and switching during embryogenesis to repress recently duplicated genes and retrotransposons in somatic cells, highlighting the plasticity of Argonaute proteins and the need for more precise temporal characterization of Argonaute-small RNA interactions.