Abstract

How pancreatic β-cells acquire function in vivo is a long-standing mystery due to the lack of technology to visualize β-cell function in living animals. Here, we applied a high-resolution two-photon light-sheet microscope for the first in vivo imaging of Ca2+ activity of every β-cell in Tg (ins:Rcamp1.07) zebrafish. We reveal that the heterogeneity of β-cell functional development in vivo occurred as two waves propagating from the islet mantle to the core, coordinated by islet vascularization. Increasing amounts of glucose induced functional acquisition and enhancement of β-cells via activating calcineurin/nuclear factor of activated T-cells (NFAT) signalling. Conserved in mammalians, calcineurin/NFAT prompted high-glucose-stimulated insulin secretion of neonatal mouse islets cultured in vitro. However, the reduction in low-glucose-stimulated insulin secretion was dependent on optimal glucose but independent of calcineurin/NFAT. Thus, combination of optimal glucose and calcineurin activation represents a previously unexplored strategy for promoting functional maturation of stem cell-derived β-like cells in vitro.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jia Zhao

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1669-6992
  2. Weijian Zong

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yiwen Zhao

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Dongzhou Gou

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Shenghui Liang

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Jiayu Shen

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yi Wu

    School of Software and Microelectronics, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Xuan Zheng

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Runlong Wu

    School of Electronics Engineering and Computer Science, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Xu Wang

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Fuzeng Niu

    School of Electronics Engineering and Computer Science, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Aimin Wang

    School of Electronics Engineering and Computer Science, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Yunfeng Zhang

    School of Electronics Engineering and Computer Science, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Jing-Wei Xiong

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  15. Liangyi Chen

    Institute of Molecular Medicine, Peking University, Beijing, China
    For correspondence
    lychen@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1270-7321
  16. Yanmei Liu

    Institute of Molecular Medicine, Peking University, Beijing, China
    For correspondence
    yanmeiliu@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9380-2560

Funding

National Science and Technology Major Project Program (2016YFA0500400)

  • Liangyi Chen

National Natural Science Foundation of China (91854112)

  • Yanmei Liu

National Natural Science Foundation of China (91750203)

  • Yanmei Liu

National Natural Science Foundation of China (31327901)

  • Liangyi Chen

National Natural Science Foundation of China (31521062)

  • Liangyi Chen

National Natural Science Foundation of China (31570839)

  • Liangyi Chen

National Natural Science Foundation of China (31301186)

  • Yanmei Liu

Beijing Natural Science Foundation (L172003)

  • Liangyi Chen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal care, generation of transgenic zebrafish lines, in vivo imaging of the live zebrafish embryos and all other experiments involving zebrafish and mouse islets were approved by the IACUC of Peking University in China (reference no. IMM-ChenLY-2).

Copyright

© 2019, Zhao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,599
    views
  • 720
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jia Zhao
  2. Weijian Zong
  3. Yiwen Zhao
  4. Dongzhou Gou
  5. Shenghui Liang
  6. Jiayu Shen
  7. Yi Wu
  8. Xuan Zheng
  9. Runlong Wu
  10. Xu Wang
  11. Fuzeng Niu
  12. Aimin Wang
  13. Yunfeng Zhang
  14. Jing-Wei Xiong
  15. Liangyi Chen
  16. Yanmei Liu
(2019)
In Vivo imaging of β-cell function reveals glucose-mediated heterogeneity of β-cell functional development
eLife 8:e41540.
https://doi.org/10.7554/eLife.41540

Share this article

https://doi.org/10.7554/eLife.41540

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.