Molecular basis for activation of lecithin:cholesterol acyltransferase by a compound that increases HDL cholesterol

  1. Kelly A Manthei
  2. Shyh-Ming Yang
  3. Bolormaa Baljinnyam
  4. Louise Chang
  5. Alisa Glukhova
  6. Wenmin Yuan
  7. Lita A Freeman
  8. David J Maloney
  9. Anna Schwendeman
  10. Alan T Remaley
  11. Ajit Jadhav
  12. John JG Tesmer  Is a corresponding author
  1. University of Michigan, United States
  2. National Institutes of Health, United States
  3. National Heart, Lung, and Blood Institute, National Institutes of Health, United States
  4. Purdue University, United States

Abstract

Lecithin:cholesterol acyltransferase (LCAT) and LCAT-activating compounds are being investigated as treatments for coronary heart disease (CHD) and familial LCAT deficiency (FLD). Herein we report the crystal structure of human LCAT in complex with a potent piperidinylpyrazolopyridine activator and an acyl intermediate-like inhibitor, revealing LCAT in an active conformation. Unlike other LCAT activators, the piperidinylpyrazolopyridine activator binds exclusively to the membrane-binding domain (MBD). Functional studies indicate that the compound does not modulate the affinity of LCAT for HDL, but instead stabilizes residues in the MBD and facilitates channeling of substrates into the active site. By demonstrating that these activators increase the activity of an FLD variant, we show that compounds targeting the MBD have therapeutic potential. Our data better define the substrate binding site of LCAT and pave the way for rational design of LCAT agonists and improved biotherapeutics for augmenting or restoring reverse cholesterol transport in CHD and FLD patients.

Data availability

The atomic coordinates and structure factors for the complex have been deposited in the PDB with accession code 6MVD.

The following data sets were generated

Article and author information

Author details

  1. Kelly A Manthei

    Life Sciences Institute, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3874-8228
  2. Shyh-Ming Yang

    National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1928-136X
  3. Bolormaa Baljinnyam

    National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Louise Chang

    Life Sciences Institute, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Alisa Glukhova

    Life Sciences Institute, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Wenmin Yuan

    Department of Pharmaceutical Science, Biointerfaces Institute, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Lita A Freeman

    Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. David J Maloney

    National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Anna Schwendeman

    Department of Pharmaceutical Science, Biointerfaces Institute, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Alan T Remaley

    Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Ajit Jadhav

    National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7955-1451
  12. John JG Tesmer

    Department of Biological Sciences, Purdue University, West Lafayette, United States
    For correspondence
    jtesmer@purdue.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1125-3727

Funding

National Heart, Lung, and Blood Institute

  • Alan T Remaley

National Center for Advancing Translational Sciences (Division of Preclinical Innovation)

  • Ajit Jadhav

American Heart Association (15POST24870001)

  • Kelly A Manthei

National Institutes of Health (F32HL131288)

  • Kelly A Manthei

American Heart Association (16POST27760002)

  • Wenmin Yuan

National Institutes of Health (HL071818)

  • John JG Tesmer

National Institutes of Health (HL122416)

  • John JG Tesmer

American Heart Association (13SDG17230049)

  • Anna Schwendeman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,619
    views
  • 353
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kelly A Manthei
  2. Shyh-Ming Yang
  3. Bolormaa Baljinnyam
  4. Louise Chang
  5. Alisa Glukhova
  6. Wenmin Yuan
  7. Lita A Freeman
  8. David J Maloney
  9. Anna Schwendeman
  10. Alan T Remaley
  11. Ajit Jadhav
  12. John JG Tesmer
(2018)
Molecular basis for activation of lecithin:cholesterol acyltransferase by a compound that increases HDL cholesterol
eLife 7:e41604.
https://doi.org/10.7554/eLife.41604

Share this article

https://doi.org/10.7554/eLife.41604

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.

    1. Biochemistry and Chemical Biology
    Jonathan G Van Vranken, Jiaming Li ... Devin K Schweppe
    Research Article

    In response to an ever-increasing demand of new small molecules therapeutics, numerous chemical and genetic tools have been developed to interrogate compound mechanism of action. Owing to its ability to approximate compound-dependent changes in thermal stability, the proteome-wide thermal shift assay has emerged as a powerful tool in this arsenal. The most recent iterations have drastically improved the overall efficiency of these assays, providing an opportunity to screen compounds at a previously unprecedented rate. Taking advantage of this advance, we quantified more than one million thermal stability measurements in response to multiple classes of therapeutic and tool compounds (96 compounds in living cells and 70 compounds in lysates). When interrogating the dataset as a whole, approximately 80% of compounds (with quantifiable targets) caused a significant change in the thermal stability of an annotated target. There was also a wealth of evidence portending off-target engagement despite the extensive use of the compounds in the laboratory and/or clinic. Finally, the combined application of cell- and lysate-based assays, aided in the classification of primary (direct ligand binding) and secondary (indirect) changes in thermal stability. Overall, this study highlights the value of these assays in the drug development process by affording an unbiased and reliable assessment of compound mechanism of action.