In-depth human plasma proteome analysis captures tissue proteins and transfer of protein variants across the placenta

Abstract

Here we present a method for in-depth human plasma proteome analysis based on high-resolution isoelectric focusing HiRIEF LC-MS/MS, demonstrating high proteome coverage, reproducibility and the potential for liquid biopsy protein profiling. By integrating genomic sequence information to the MS-based plasma proteome analysis we enable detection of single amino acid variants and for the first time demonstrate transfer of multiple protein variants between mother and fetus across the placenta. We further show that our method has the ability to detect both low abundance tissue-annotated proteins and phosphorylated proteins in plasma, as well as quantitate differences in plasma proteomes between the mother and the newborn as well as changes related to pregnancy.

Data availability

MS raw data are available via ProteomeXchange with identifier PXD010899.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Maria Pernemalm

    Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4624-031X
  2. AnnSofi Sandberg

    Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Yafeng Zhu

    Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Jorrit Boekel

    Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Davide Tamburro

    Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Jochen M Schwenk

    Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8141-8449
  7. Albin Björk

    Rheumatology Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  8. Marie Wahren-Herlenius

    Rheumatology Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  9. Hanna Åmark

    Department of Clinical Science and Education, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  10. Claes-Göran Östenson

    Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  11. Magnus Westgren

    Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  12. Janne Lehtiö

    Department of oncology and pathology, Karolinska Institute, Stockholm, Sweden
    For correspondence
    janne.lehtio@ki.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8100-9562

Funding

Vetenskapsrådet

  • Maria Pernemalm
  • AnnSofi Sandberg
  • Yafeng Zhu
  • Jorrit Boekel
  • Claes-Göran Östenson
  • Janne Lehtiö

Stiftelsen Olle Engkvist Byggmästare

  • Claes-Göran Östenson

Cancerfonden

  • Maria Pernemalm
  • Janne Lehtiö

Stiftelsen för Strategisk Forskning

  • Maria Pernemalm
  • AnnSofi Sandberg
  • Yafeng Zhu
  • Janne Lehtiö

Horizon 2020 Framework Programme

  • Maria Pernemalm
  • Janne Lehtiö

Familjen Erling-Perssons Stiftelse

  • Janne Lehtiö

Barncancerfonden

  • Janne Lehtiö

Stockholms Läns Landsting

  • Claes-Göran Östenson

the Swedish Council for Working Life and Social Research

  • Claes-Göran Östenson

Swedish Diabetes Foundation

  • Claes-Göran Östenson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The plasma collections were approved by local ethics boards and all participants signed informed consent. The approval identifiers for the corresponding studies are as follows; Healthy normals Dnr 91:164 for men and Dnr 95:298 for women, mother/child 2014/1622-31/2 and female longitudinal 2008/915-31/4.

Copyright

© 2019, Pernemalm et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,997
    views
  • 977
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maria Pernemalm
  2. AnnSofi Sandberg
  3. Yafeng Zhu
  4. Jorrit Boekel
  5. Davide Tamburro
  6. Jochen M Schwenk
  7. Albin Björk
  8. Marie Wahren-Herlenius
  9. Hanna Åmark
  10. Claes-Göran Östenson
  11. Magnus Westgren
  12. Janne Lehtiö
(2019)
In-depth human plasma proteome analysis captures tissue proteins and transfer of protein variants across the placenta
eLife 8:e41608.
https://doi.org/10.7554/eLife.41608

Share this article

https://doi.org/10.7554/eLife.41608

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Gaetan De Waele, Gerben Menschaert, Willem Waegeman
    Research Article

    Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Sanjarbek Hudaiberdiev, Ivan Ovcharenko
    Research Article

    Enhancers and promoters are classically considered to be bound by a small set of transcription factors (TFs) in a sequence-specific manner. This assumption has come under increasing skepticism as the datasets of ChIP-seq assays of TFs have expanded. In particular, high-occupancy target (HOT) loci attract hundreds of TFs with often no detectable correlation between ChIP-seq peaks and DNA-binding motif presence. Here, we used a set of 1003 TF ChIP-seq datasets (HepG2, K562, H1) to analyze the patterns of ChIP-seq peak co-occurrence in combination with functional genomics datasets. We identified 43,891 HOT loci forming at the promoter (53%) and enhancer (47%) regions. HOT promoters regulate housekeeping genes, whereas HOT enhancers are involved in tissue-specific process regulation. HOT loci form the foundation of human super-enhancers and evolve under strong negative selection, with some of these loci being located in ultraconserved regions. Sequence-based classification analysis of HOT loci suggested that their formation is driven by the sequence features, and the density of mapped ChIP-seq peaks across TF-bound loci correlates with sequence features and the expression level of flanking genes. Based on the affinities to bind to promoters and enhancers we detected five distinct clusters of TFs that form the core of the HOT loci. We report an abundance of HOT loci in the human genome and a commitment of 51% of all TF ChIP-seq binding events to HOT locus formation thus challenging the classical model of enhancer activity and propose a model of HOT locus formation based on the existence of large transcriptional condensates.