In-depth human plasma proteome analysis captures tissue proteins and transfer of protein variants across the placenta

Abstract

Here we present a method for in-depth human plasma proteome analysis based on high-resolution isoelectric focusing HiRIEF LC-MS/MS, demonstrating high proteome coverage, reproducibility and the potential for liquid biopsy protein profiling. By integrating genomic sequence information to the MS-based plasma proteome analysis we enable detection of single amino acid variants and for the first time demonstrate transfer of multiple protein variants between mother and fetus across the placenta. We further show that our method has the ability to detect both low abundance tissue-annotated proteins and phosphorylated proteins in plasma, as well as quantitate differences in plasma proteomes between the mother and the newborn as well as changes related to pregnancy.

Data availability

MS raw data are available via ProteomeXchange with identifier PXD010899.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Maria Pernemalm

    Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4624-031X
  2. AnnSofi Sandberg

    Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Yafeng Zhu

    Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Jorrit Boekel

    Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Davide Tamburro

    Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Jochen M Schwenk

    Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8141-8449
  7. Albin Björk

    Rheumatology Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  8. Marie Wahren-Herlenius

    Rheumatology Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  9. Hanna Åmark

    Department of Clinical Science and Education, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  10. Claes-Göran Östenson

    Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  11. Magnus Westgren

    Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  12. Janne Lehtiö

    Department of oncology and pathology, Karolinska Institute, Stockholm, Sweden
    For correspondence
    janne.lehtio@ki.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8100-9562

Funding

Vetenskapsrådet

  • Maria Pernemalm
  • AnnSofi Sandberg
  • Yafeng Zhu
  • Jorrit Boekel
  • Claes-Göran Östenson
  • Janne Lehtiö

Stiftelsen Olle Engkvist Byggmästare

  • Claes-Göran Östenson

Cancerfonden

  • Maria Pernemalm
  • Janne Lehtiö

Stiftelsen för Strategisk Forskning

  • Maria Pernemalm
  • AnnSofi Sandberg
  • Yafeng Zhu
  • Janne Lehtiö

Horizon 2020 Framework Programme

  • Maria Pernemalm
  • Janne Lehtiö

Familjen Erling-Perssons Stiftelse

  • Janne Lehtiö

Barncancerfonden

  • Janne Lehtiö

Stockholms Läns Landsting

  • Claes-Göran Östenson

the Swedish Council for Working Life and Social Research

  • Claes-Göran Östenson

Swedish Diabetes Foundation

  • Claes-Göran Östenson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The plasma collections were approved by local ethics boards and all participants signed informed consent. The approval identifiers for the corresponding studies are as follows; Healthy normals Dnr 91:164 for men and Dnr 95:298 for women, mother/child 2014/1622-31/2 and female longitudinal 2008/915-31/4.

Reviewing Editor

  1. Nir Ben-Tal, Tel Aviv University, Israel

Publication history

  1. Received: August 31, 2018
  2. Accepted: April 4, 2019
  3. Accepted Manuscript published: April 8, 2019 (version 1)
  4. Version of Record published: May 15, 2019 (version 2)

Copyright

© 2019, Pernemalm et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,175
    Page views
  • 851
    Downloads
  • 34
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maria Pernemalm
  2. AnnSofi Sandberg
  3. Yafeng Zhu
  4. Jorrit Boekel
  5. Davide Tamburro
  6. Jochen M Schwenk
  7. Albin Björk
  8. Marie Wahren-Herlenius
  9. Hanna Åmark
  10. Claes-Göran Östenson
  11. Magnus Westgren
  12. Janne Lehtiö
(2019)
In-depth human plasma proteome analysis captures tissue proteins and transfer of protein variants across the placenta
eLife 8:e41608.
https://doi.org/10.7554/eLife.41608

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Zhe Chen, Garrett J Blair ... Hugh T Blair
    Tools and Resources

    Epifluorescence miniature microscopes ('miniscopes') are widely used for in vivo calcium imaging of neural population activity. Imaging data is typically collected during a behavioral task and stored for later offline analysis, but emerging techniques for online imaging can support novel closed-loop experiments in which neural population activity is decoded in real time to trigger neurostimulation or sensory feedback. To achieve short feedback latencies, online imaging systems must be optimally designed to maximize computational speed and efficiency while minimizing errors in population decoding. Here we introduce DeCalciOn, an open-source device for real-time imaging and population decoding of in vivo calcium signals that is hardware compatible with all miniscopes that use the UCLA Data Acquisition (DAQ) interface. DeCalciOn performs online motion stabilization, neural enhancement, calcium trace extraction, and decoding of up to 1024 traces per frame at latencies of <50 ms after fluorescence photons arrive at the miniscope image sensor. We show that DeCalciOn can accurately decode the position of rats (n=12) running on a linear track from calcium fluorescence in the hippocampal CA1 layer, and can categorically classify behaviors performed by rats (n=2) during an instrumental task from calcium fluorescence in orbitofrontal cortex (OFC). DeCalciOn achieves high decoding accuracy at short latencies using innovations such as field-programmable gate array (FPGA) hardware for real time image processing and contour-free methods to efficiently extract calcium traces from sensor images. In summary, our system offers an affordable plug-and-play solution for real-time calcium imaging experiments in behaving animals.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Anastasia O Smirnova, Anna M Miroshnichenkova ... Alexander Komkov
    Tools and Resources

    High-throughput sequencing of adaptive immune receptor repertoires is a valuable tool for receiving insights in adaptive immunity studies. Several powerful TCR/BCR repertoire reconstruction and analysis methods have been developed in the past decade. However, detecting and correcting the discrepancy between real and experimentally observed lymphocyte clone frequencies is still challenging. Here we discovered a hallmark anomaly in the ratio between read count and clone count-based frequencies of non-functional clonotypes in multiplex PCR-based immune repertoires. Calculating this anomaly, we formulated a quantitative measure of V- and J-genes frequency bias driven by multiplex PCR during library preparation called Over Amplification Rate (OAR). Based on the OAR concept, we developed an original software for multiplex PCR-specific bias evaluation and correction named iROAR: Immune Repertoire Over Amplification Removal (https://github.com/smiranast/iROAR). The iROAR algorithm was successfully tested on previously published TCR repertoires obtained using both 5' RACE (Rapid Amplification of cDNA Ends)-based and multiplex PCR-based approaches and compared with a biological spike-in-based method for PCR bias evaluation. The developed approach can increase the accuracy and consistency of repertoires reconstructed by different methods making them more applicable for comparative analysis.