In-depth human plasma proteome analysis captures tissue proteins and transfer of protein variants across the placenta

Abstract

Here we present a method for in-depth human plasma proteome analysis based on high-resolution isoelectric focusing HiRIEF LC-MS/MS, demonstrating high proteome coverage, reproducibility and the potential for liquid biopsy protein profiling. By integrating genomic sequence information to the MS-based plasma proteome analysis we enable detection of single amino acid variants and for the first time demonstrate transfer of multiple protein variants between mother and fetus across the placenta. We further show that our method has the ability to detect both low abundance tissue-annotated proteins and phosphorylated proteins in plasma, as well as quantitate differences in plasma proteomes between the mother and the newborn as well as changes related to pregnancy.

Data availability

MS raw data are available via ProteomeXchange with identifier PXD010899.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Maria Pernemalm

    Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4624-031X
  2. AnnSofi Sandberg

    Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Yafeng Zhu

    Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Jorrit Boekel

    Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Davide Tamburro

    Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Jochen M Schwenk

    Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8141-8449
  7. Albin Björk

    Rheumatology Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  8. Marie Wahren-Herlenius

    Rheumatology Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  9. Hanna Åmark

    Department of Clinical Science and Education, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  10. Claes-Göran Östenson

    Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  11. Magnus Westgren

    Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  12. Janne Lehtiö

    Department of oncology and pathology, Karolinska Institute, Stockholm, Sweden
    For correspondence
    janne.lehtio@ki.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8100-9562

Funding

Vetenskapsrådet

  • Maria Pernemalm
  • AnnSofi Sandberg
  • Yafeng Zhu
  • Jorrit Boekel
  • Claes-Göran Östenson
  • Janne Lehtiö

Stiftelsen Olle Engkvist Byggmästare

  • Claes-Göran Östenson

Cancerfonden

  • Maria Pernemalm
  • Janne Lehtiö

Stiftelsen för Strategisk Forskning

  • Maria Pernemalm
  • AnnSofi Sandberg
  • Yafeng Zhu
  • Janne Lehtiö

Horizon 2020 Framework Programme

  • Maria Pernemalm
  • Janne Lehtiö

Familjen Erling-Perssons Stiftelse

  • Janne Lehtiö

Barncancerfonden

  • Janne Lehtiö

Stockholms Läns Landsting

  • Claes-Göran Östenson

the Swedish Council for Working Life and Social Research

  • Claes-Göran Östenson

Swedish Diabetes Foundation

  • Claes-Göran Östenson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The plasma collections were approved by local ethics boards and all participants signed informed consent. The approval identifiers for the corresponding studies are as follows; Healthy normals Dnr 91:164 for men and Dnr 95:298 for women, mother/child 2014/1622-31/2 and female longitudinal 2008/915-31/4.

Copyright

© 2019, Pernemalm et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.41608

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Fangluo Chen, Dylan C Sarver ... G William Wong
    Research Article

    Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.