Abstract

Although B cells expressing the IFNgR or the IFNg-inducible transcription factor T-bet drive autoimmunity in Systemic Lupus Erythematosus (SLE)-prone mouse models, the role for IFNg signaling in human antibody responses is unknown. We show that elevated levels of IFNg in SLE patients correlate with expansion of the T-bet expressing IgDnegCD27negCD11c+CXCR5neg (DN2) pre-antibody secreting cell (pre-ASC) subset. We demonstrate that naïve B cells form T-bethi pre-ASCs following stimulation with either Th1 cells or with IFNg, IL-2, anti-Ig and TLR7/8 ligand and that IL-21 dependent ASC formation is significantly enhanced by IFNg or IFNg-producing T cells. IFNg promotes ASC development by synergizing with IL-2 and TLR7/8 ligands to induce genome-wide epigenetic reprogramming of B cells, which results in increased chromatin accessibility surrounding IRF4 and BLIMP1 binding motifs and epigenetic remodeling of IL21R and PRDM1 loci. Finally, we show that IFNg signals poise B cells to differentiate by increasing their responsiveness to IL-21.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE95282 and GSE118984. All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files for sequencing analysis are included as Supplementary Files 1 and 2 (excel files).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Esther Zumaquero

    Department of Microbiology, The University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sara L Stone

    Department of Microbiology, The University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1689-8148
  3. Christopher D Scharer

    Department of Microbiology and Immunology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7716-8504
  4. Scott A Jenks

    Department of Medicine, Division of Rheumatology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Anoma Nellore

    Department of Medicine, Division of Infectious Disease, The University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Betty Mousseau

    Department of Microbiology, The University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Antonio Rosal-Vela

    Department of Microbiology, The University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Davide Botta

    Department of Microbiology, The University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3926-0662
  9. John E Bradley

    Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Wojciech Wojciechowski

    Center for Pediatric Biomedical Research, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Travis Ptacek

    Department of Microbiology, The University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Maria I Danila

    Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Jeffrey C Edberg

    Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. S Louis Bridges

    Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Robert P Kimberly

    Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. W Winn Chatham

    Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Trenton R Schoeb

    Department of Genetics, The University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Alexander F Rosenberg

    Department of Microbiology, The University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Jeremy M Boss

    Department of Microbiology and Immunology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Inaki Sanz

    Department of Medicine, Division of Rheumatology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Frances E Lund

    Department of Microbiology, The University of Alabama at Birmingham, Birmingham, United States
    For correspondence
    flund@uab.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3083-1246

Funding

NIH Office of the Director (UL1 TR001417)

  • Travis Ptacek

NIH Office of the Director (1P30 DK079337)

  • Trenton R Schoeb

NIH Office of the Director (P01 AI078907)

  • Frances E Lund

NIH Office of the Director (R01 AI110508)

  • Frances E Lund

NIH Office of the Director (R01 AI123733)

  • Jeremy Boss

NIH Office of the Director (P01 AI125180)

  • Jeremy M Boss

NIH Office of the Director (R37 AI049660)

  • Sanz Inaki

NIH Office of the Director (U19 AI110483)

  • Sanz Inaki

NIH Office of the Director (T32 GM008361)

  • Sara L Stone

NIH Office of the Director (K23 AR062100)

  • Maria I Danila

Lupus Research Alliance (#550070)

  • Frances E Lund

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving animals were approved by the UAB Institutional Animal Care and Use Committee and were conducted in accordance with the principles outlined by the National Research Council. UAB IACUC approval IACUC-09648 and IACUC-21203.

Human subjects: All subjects gave written informed consent for participation and provided peripheral blood for analysis. The UAB and Emory Human Subjects Institutional Review Board approved all study protocols for healthy donors and SLE patients. IRB protocols 160301002, X020805006, X140213002, and N140102003 for UAB and 58515 for Emory.

Copyright

© 2019, Zumaquero et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,727
    views
  • 1,070
    downloads
  • 134
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Esther Zumaquero
  2. Sara L Stone
  3. Christopher D Scharer
  4. Scott A Jenks
  5. Anoma Nellore
  6. Betty Mousseau
  7. Antonio Rosal-Vela
  8. Davide Botta
  9. John E Bradley
  10. Wojciech Wojciechowski
  11. Travis Ptacek
  12. Maria I Danila
  13. Jeffrey C Edberg
  14. S Louis Bridges
  15. Robert P Kimberly
  16. W Winn Chatham
  17. Trenton R Schoeb
  18. Alexander F Rosenberg
  19. Jeremy M Boss
  20. Inaki Sanz
  21. Frances E Lund
(2019)
IFNγ induces epigenetic programming of human T-bethi B cells and promotesTLR7/8 and IL-21 induced differentiation
eLife 8:e41641.
https://doi.org/10.7554/eLife.41641

Share this article

https://doi.org/10.7554/eLife.41641

Further reading

    1. Immunology and Inflammation
    Jian Cui, Hua Li ... Congqing Wu
    Short Report

    Systemic blood coagulation accompanies inflammation during severe infections like sepsis and COVID. We previously established a link between coagulopathy and pyroptosis, a vital defense mechanism against infection. During pyroptosis, the formation of gasdermin-D (GSDMD) pores on the plasma membrane leads to the release of tissue factor (TF)-positive microvesicles (MVs) that are procoagulant. Mice lacking GSDMD release fewer of these procoagulant MVs. However, the specific mechanisms coupling the activation of GSDMD to MV release remain unclear. Plasma membrane rupture (PMR) in pyroptosis was recently reported to be actively mediated by the transmembrane protein Ninjurin-1 (NINJ1). Here, we show that NINJ1 promotes procoagulant MV release during pyroptosis. Haploinsufficiency or glycine inhibition of NINJ1 limited the release of procoagulant MVs and inflammatory cytokines, and partially protected against blood coagulation and lethality triggered by bacterial flagellin. Our findings suggest a crucial role for NINJ1-dependent PMR in inflammasome-induced blood coagulation and inflammation.

    1. Immunology and Inflammation
    Sytse J Piersma, Shasha Li ... Wayne M Yokoyama
    Research Article

    Natural killer (NK) cells recognize target cells through germline-encoded activation and inhibitory receptors enabling effective immunity against viruses and cancer. The Ly49 receptor family in the mouse and killer immunoglobin-like receptor family in humans play a central role in NK cell immunity through recognition of major histocompatibility complex class I (MHC-I) and related molecules. Functionally, these receptor families are involved in the licensing and rejection of MHC-I-deficient cells through missing-self. The Ly49 family is highly polymorphic, making it challenging to detail the contributions of individual Ly49 receptors to NK cell function. Herein, we showed mice lacking expression of all Ly49s were unable to reject missing-self target cells in vivo, were defective in NK cell licensing, and displayed lower KLRG1 on the surface of NK cells. Expression of Ly49A alone on an H-2Dd background restored missing-self target cell rejection, NK cell licensing, and NK cell KLRG1 expression. Thus, a single inhibitory Ly49 receptor is sufficient to license NK cells and mediate missing-self in vivo.