The hydrophobic nature of a novel membrane interface regulates the enzyme activity of a voltage-sensing phosphatase

Abstract

Voltage-sensing phosphatases (VSP) contain a voltage sensor domain (VSD) similar to that of voltage-gated ion channels but lack a pore-gate domain. A VSD in a VSP regulates the cytoplasmic catalytic region (CCR). However, the mechanisms by which the VSD couples to the CCR remain elusive. Here we report a membrane interface (named 'the hydrophobic spine'), which is essential for the coupling of the VSD and CCR. Our molecular dynamics simulations suggest that the hydrophobic spine of Ciona intestinalis VSP (Ci-VSP) provides a hinge-like motion for the CCR through the loose membrane association of the phosphatase domain. Electrophysiological experiments indicate that the voltage-dependent phosphatase activity of Ci-VSP depends on the hydrophobicity and presence of an aromatic ring in the hydrophobic spine. Analysis of conformational changes in the VSD and CCR suggests that the VSP has two states with distinct enzyme activities and that the second transition depends on the hydrophobic spine.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 4,5,6,7,8,9 and 10.

Article and author information

Author details

  1. Akira Kawanabe

    Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Masaki Hashimoto

    Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Manami Nishizawa

    School of Medical Technology, Teikyo University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Kazuhisa Nishizawa

    School of Medical Technology, Teikyo University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Hirotaka Narita

    Institute for Protein Research, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Tomoko Yonezawa

    Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Yuka Jinno

    Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Souhei Sakata

    Department of Physiology, Division of Life Sciences, Faculty of Medicine, Osaka Medical College, Takatsuki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Atsushi Nakagawa

    Institute for Protein Research, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Yasushi Okamura

    Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
    For correspondence
    yokamura@phys2.med.osaka-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5386-7968

Funding

Core Research for Evolutional Science and Technology (JPMJCR14M3)

  • Atsushi Nakagawa
  • Yasushi Okamura

Ministry of Education, Culture, Sports, Science, and Technology (25253016)

  • Yasushi Okamura

Japan Society for the Promotion of Science (15H05901)

  • Yasushi Okamura

Japan Society for the Promotion of Science (JP15K18516)

  • Akira Kawanabe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were carried out following the guidelines of the Animal Research Committees of the Graduate School of Medicine of Osaka University.

Copyright

© 2018, Kawanabe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,509
    views
  • 248
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Akira Kawanabe
  2. Masaki Hashimoto
  3. Manami Nishizawa
  4. Kazuhisa Nishizawa
  5. Hirotaka Narita
  6. Tomoko Yonezawa
  7. Yuka Jinno
  8. Souhei Sakata
  9. Atsushi Nakagawa
  10. Yasushi Okamura
(2018)
The hydrophobic nature of a novel membrane interface regulates the enzyme activity of a voltage-sensing phosphatase
eLife 7:e41653.
https://doi.org/10.7554/eLife.41653

Share this article

https://doi.org/10.7554/eLife.41653

Further reading

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Ana Cristina Chang-Gonzalez, Aoi Akitsu ... Wonmuk Hwang
    Research Advance

    Increasing evidence suggests that mechanical load on the αβ T-cell receptor (TCR) is crucial for recognizing the antigenic peptide-bound major histocompatibility complex (pMHC) molecule. Our recent all-atom molecular dynamics (MD) simulations revealed that the inter-domain motion of the TCR is responsible for the load-induced catch bond behavior of the TCR-pMHC complex and peptide discrimination (Chang-Gonzalez et al., 2024). To further examine the generality of the mechanism, we perform all-atom MD simulations of the B7 TCR under different conditions for comparison with our previous simulations of the A6 TCR. The two TCRs recognize the same pMHC and have similar interfaces with pMHC in crystal structures. We find that the B7 TCR-pMHC interface stabilizes under ∼15 pN load using a conserved dynamic allostery mechanism that involves the asymmetric motion of the TCR chassis. However, despite forming comparable contacts with pMHC as A6 in the crystal structure, B7 has fewer high-occupancy contacts with pMHC and exhibits higher mechanical compliance during the simulation. These results indicate that the dynamic allostery common to the TCRαβ chassis can amplify slight differences in interfacial contacts into distinctive mechanical responses and nuanced biological outcomes.

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Théo Le Moigne, Martina Santoni ... Julien Henri
    Research Article

    The Calvin-Benson-Bassham cycle (CBBC) performs carbon fixation in photosynthetic organisms. Among the eleven enzymes that participate in the pathway, sedoheptulose-1,7-bisphosphatase (SBPase) is expressed in photo-autotrophs and catalyzes the hydrolysis of sedoheptulose-1,7-bisphosphate (SBP) to sedoheptulose-7-phosphate (S7P). SBPase, along with nine other enzymes in the CBBC, contributes to the regeneration of ribulose-1,5-bisphosphate, the carbon-fixing co-substrate used by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The metabolic role of SBPase is restricted to the CBBC, and a recent study revealed that the three-dimensional structure of SBPase from the moss Physcomitrium patens was found to be similar to that of fructose-1,6-bisphosphatase (FBPase), an enzyme involved in both CBBC and neoglucogenesis. In this study we report the first structure of an SBPase from a chlorophyte, the model unicellular green microalga Chlamydomonas reinhardtii. By combining experimental and computational structural analyses, we describe the topology, conformations, and quaternary structure of Chlamydomonas reinhardtii SBPase (CrSBPase). We identify active site residues and locate sites of redox- and phospho-post-translational modifications that contribute to enzymatic functions. Finally, we observe that CrSBPase adopts distinct oligomeric states that may dynamically contribute to the control of its activity.