Neuronal morphologies built for reliable physiology in a rhythmic motor circuit

  1. Adriane G Otopalik  Is a corresponding author
  2. Jason Pipkin
  3. Eve Marder  Is a corresponding author
  1. Columbia University, United States
  2. Brandeis University, United States

Abstract

It is often assumed that highly-branched neuronal structures perform compartmentalized computations. Instead, the Gastric Mill (GM) neuron in the crustacean stomatogastric ganglion (STG) operates like a single electrotonic compartment, despite having thousands of branch points and total cable length >10 mm (Otopalik et al., 2017a, b). We now show: 1) that compact electrotonic architecture is generalizable to other STG neuron types, 2) these neurons present direction-insensitive, linear voltage integration, suggesting they pool synaptic inputs across their neuronal structures. 3) Simulations of 720 cable models spanning a broad range of geometries and passive properties show that compact electrotonus, linear integration, and directional insensitivity in STG neurons arise from their neurite geometries (diameters tapering from 10-20 µm to < 2 µm at their terminal tips). A broad parameter search reveals multiple morphological and biophysical solutions for achieving different degrees of passive electrotonic decrement and computational strategies in the absence of active properties.

Data availability

All computational scripts used for: analysis, visualization, and model simulations, will be promptly posted on the Marder Lab GitHub site (https://github.com/marderlab) upon publication, where it will be freely available to the public. These tools are currently available on A. Otopalik's GitHub site (https://github.com/otopalik/Otopalik-Pipkin-Marder-2019). All source data are publicly available on Dryad (https://dx.doi.org/10.5061/dryad.48pt6jd).

The following data sets were generated

Article and author information

Author details

  1. Adriane G Otopalik

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    ao2656@columbia.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3224-6502
  2. Jason Pipkin

    Volen Center, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  3. Eve Marder

    Volen Center, Brandeis University, Waltham, United States
    For correspondence
    marder@brandeis.edu
    Competing interests
    Eve Marder, Deputy Editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9632-5448

Funding

National Institute of Neurological Disorders and Stroke (F31NS092126)

  • Adriane G Otopalik

National Institute of Neurological Disorders and Stroke (R35NS097343)

  • Eve Marder

Grass Foundation

  • Adriane G Otopalik

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Otopalik et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,659
    views
  • 236
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adriane G Otopalik
  2. Jason Pipkin
  3. Eve Marder
(2019)
Neuronal morphologies built for reliable physiology in a rhythmic motor circuit
eLife 8:e41728.
https://doi.org/10.7554/eLife.41728

Share this article

https://doi.org/10.7554/eLife.41728

Further reading

    1. Neuroscience
    Chad Heer, Mark Sheffield
    Research Article

    Neuromodulatory inputs to the hippocampus play pivotal roles in modulating synaptic plasticity, shaping neuronal activity, and influencing learning and memory. Recently, it has been shown that the main sources of catecholamines to the hippocampus, ventral tegmental area (VTA) and locus coeruleus (LC), may have overlapping release of neurotransmitters and effects on the hippocampus. Therefore, to dissect the impacts of both VTA and LC circuits on hippocampal function, a thorough examination of how these pathways might differentially operate during behavior and learning is necessary. We therefore utilized two-photon microscopy to functionally image the activity of VTA and LC axons within the CA1 region of the dorsal hippocampus in head-fixed male mice navigating linear paths within virtual reality (VR) environments. We found that within familiar environments some VTA axons and the vast majority of LC axons showed a correlation with the animals’ running speed. However, as mice approached previously learned rewarded locations, a large majority of VTA axons exhibited a gradual ramping-up of activity, peaking at the reward location. In contrast, LC axons displayed a pre-movement signal predictive of the animal’s transition from immobility to movement. Interestingly, a marked divergence emerged following a switch from the familiar to novel VR environments. Many LC axons showed large increases in activity that remained elevated for over a minute, while the previously observed VTA axon ramping-to-reward dynamics disappeared during the same period. In conclusion, these findings highlight distinct roles of VTA and LC catecholaminergic inputs in the dorsal CA1 hippocampal region. These inputs encode unique information, with reward information in VTA inputs and novelty and kinematic information in LC inputs, likely contributing to differential modulation of hippocampal activity during behavior and learning.

    1. Neuroscience
    James D O'Leary, Rasmus Bruckner ... Tomás J Ryan
    Research Article

    Memories are stored as ensembles of engram neurons and their successful recall involves the reactivation of these cellular networks. However, significant gaps remain in connecting these cell ensembles with the process of forgetting. Here, we utilized a mouse model of object memory and investigated the conditions in which a memory could be preserved, retrieved, or forgotten. Direct modulation of engram activity via optogenetic stimulation or inhibition either facilitated or prevented the recall of an object memory. In addition, through behavioral and pharmacological interventions, we successfully prevented or accelerated forgetting of an object memory. Finally, we showed that these results can be explained by a computational model in which engrams that are subjectively less relevant for adaptive behavior are more likely to be forgotten. Together, these findings suggest that forgetting may be an adaptive form of engram plasticity which allows engrams to switch from an accessible state to an inaccessible state.