Neuronal morphologies built for reliable physiology in a rhythmic motor circuit

  1. Adriane G Otopalik  Is a corresponding author
  2. Jason Pipkin
  3. Eve Marder  Is a corresponding author
  1. Columbia University, United States
  2. Brandeis University, United States


It is often assumed that highly-branched neuronal structures perform compartmentalized computations. Instead, the Gastric Mill (GM) neuron in the crustacean stomatogastric ganglion (STG) operates like a single electrotonic compartment, despite having thousands of branch points and total cable length >10 mm (Otopalik et al., 2017a, b). We now show: 1) that compact electrotonic architecture is generalizable to other STG neuron types, 2) these neurons present direction-insensitive, linear voltage integration, suggesting they pool synaptic inputs across their neuronal structures. 3) Simulations of 720 cable models spanning a broad range of geometries and passive properties show that compact electrotonus, linear integration, and directional insensitivity in STG neurons arise from their neurite geometries (diameters tapering from 10-20 µm to < 2 µm at their terminal tips). A broad parameter search reveals multiple morphological and biophysical solutions for achieving different degrees of passive electrotonic decrement and computational strategies in the absence of active properties.

Data availability

All computational scripts used for: analysis, visualization, and model simulations, will be promptly posted on the Marder Lab GitHub site ( upon publication, where it will be freely available to the public. These tools are currently available on A. Otopalik's GitHub site ( All source data are publicly available on Dryad (

The following data sets were generated

Article and author information

Author details

  1. Adriane G Otopalik

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3224-6502
  2. Jason Pipkin

    Volen Center, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  3. Eve Marder

    Volen Center, Brandeis University, Waltham, United States
    For correspondence
    Competing interests
    Eve Marder, Deputy Editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9632-5448


National Institute of Neurological Disorders and Stroke (F31NS092126)

  • Adriane G Otopalik

National Institute of Neurological Disorders and Stroke (R35NS097343)

  • Eve Marder

Grass Foundation

  • Adriane G Otopalik

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Inna Slutsky, Tel Aviv University, Israel

Publication history

  1. Received: September 7, 2018
  2. Accepted: January 12, 2019
  3. Accepted Manuscript published: January 18, 2019 (version 1)
  4. Version of Record published: January 28, 2019 (version 2)


© 2019, Otopalik et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 1,454
    Page views
  • 217
  • 7

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adriane G Otopalik
  2. Jason Pipkin
  3. Eve Marder
Neuronal morphologies built for reliable physiology in a rhythmic motor circuit
eLife 8:e41728.
  1. Further reading

Further reading

    1. Developmental Biology
    2. Neuroscience
    Ashtyn T Wiltbank et al.
    Research Article

    Efficient neurotransmission is essential for organism survival and is enhanced by myelination. However, the genes that regulate myelin and myelinating glial cell development have not been fully characterized. Data from our lab and others demonstrates that cd59, which encodes for a small GPI-anchored glycoprotein, is highly expressed in developing zebrafish, rodent, and human oligodendrocytes (OLs) and Schwann cells (SCs), and that patients with CD59 dysfunction develop neurological dysfunction during early childhood. Yet, the function of Cd59 in the developing nervous system is currently undefined. In this study, we demonstrate that cd59 is expressed in a subset of developing SCs. Using cd59 mutant zebrafish, we show that developing SCs proliferate excessively and nerves may have reduced myelin volume, altered myelin ultrastructure, and perturbed node of Ranvier assembly. Finally, we demonstrate that complement activity is elevated in cd59 mutants and that inhibiting inflammation restores SC proliferation, myelin volume, and nodes of Ranvier to wildtype levels. Together, this work identifies Cd59 and developmental inflammation as key players in myelinating glial cell development, highlighting the collaboration between glia and the innate immune system to ensure normal neural development.

    1. Neuroscience
    Arefeh Sherafati et al.
    Research Article Updated

    Cochlear implants are neuroprosthetic devices that can restore hearing in people with severe to profound hearing loss by electrically stimulating the auditory nerve. Because of physical limitations on the precision of this stimulation, the acoustic information delivered by a cochlear implant does not convey the same level of acoustic detail as that conveyed by normal hearing. As a result, speech understanding in listeners with cochlear implants is typically poorer and more effortful than in listeners with normal hearing. The brain networks supporting speech understanding in listeners with cochlear implants are not well understood, partly due to difficulties obtaining functional neuroimaging data in this population. In the current study, we assessed the brain regions supporting spoken word understanding in adult listeners with right unilateral cochlear implants (n=20) and matched controls (n=18) using high-density diffuse optical tomography (HD-DOT), a quiet and non-invasive imaging modality with spatial resolution comparable to that of functional MRI. We found that while listening to spoken words in quiet, listeners with cochlear implants showed greater activity in the left prefrontal cortex than listeners with normal hearing, specifically in a region engaged in a separate spatial working memory task. These results suggest that listeners with cochlear implants require greater cognitive processing during speech understanding than listeners with normal hearing, supported by compensatory recruitment of the left prefrontal cortex.