FOXP2 exhibits neuron class specific expression, but is not required for multiple aspects of cortical histogenesis

  1. Ryan J Kast  Is a corresponding author
  2. Alexandra L Lanjewar
  3. Colton D Smith
  4. Pat Levitt  Is a corresponding author
  1. University of Southern California, United States
  2. Children's Hospital Los Angeles, United States

Abstract

The expression patterns of the transcription factor FOXP2 in the developing mammalian forebrain have been described, and some studies have tested the role of this protein in the development and function of specific forebrain circuits by diverse methods and in multiple species. Clinically, mutations in FOXP2 are associated with severe developmental speech disturbances, and molecular studies indicate that impairment of Foxp2 may lead to dysregulation of genes involved in forebrain histogenesis. Here, anatomical and molecular phenotypes of the cortical neuron populations that express FOXP2 were characterized in mice. Additionally, Foxp2 was removed from the developing mouse cortex at different prenatal ages using two Cre-recombinase driver lines. Detailed molecular and circuit analyses were undertaken to identify potential disruptions of development. Surprisingly, the results demonstrate that Foxp2 function is not required for many functions that it has been proposed to regulate, and therefore plays a more limited role in cortical development than previously thought.

Data availability

All numbers relating to quantitative experiments have been uploaded to Dryad. https://dx.doi.org/10.5061/dryad.6hd7bf7

The following data sets were generated

Article and author information

Author details

  1. Ryan J Kast

    Keck School of Medicine, University of Southern California, Los Angeles, United States
    For correspondence
    rkast@mit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3580-8811
  2. Alexandra L Lanjewar

    Keck School of Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Colton D Smith

    Keck School of Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Pat Levitt

    The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, United States
    For correspondence
    plevitt@med.usc.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Mental Health (MH067842)

  • Ryan J Kast
  • Alexandra L Lanjewar
  • Colton D Smith
  • Pat Levitt

Children's Hospital Los Angeles

  • Ryan J Kast

Simms/Mann Institute and Foundation

  • Pat Levitt

National Institutes of Health (T32GM113859)

  • Alexandra L Lanjewar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures used in this study were in strict accordance with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Institutional Animal Care and Use Committee at Children's Hospital Los Angeles (Protocol #374-15).

Copyright

© 2019, Kast et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,490
    views
  • 384
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ryan J Kast
  2. Alexandra L Lanjewar
  3. Colton D Smith
  4. Pat Levitt
(2019)
FOXP2 exhibits neuron class specific expression, but is not required for multiple aspects of cortical histogenesis
eLife 8:e42012.
https://doi.org/10.7554/eLife.42012

Share this article

https://doi.org/10.7554/eLife.42012

Further reading

    1. Developmental Biology
    Yan-Xue Li, Xin-Le Kang ... Xiao-Fan Zhao
    Research Article

    Juvenile hormone (JH) is important to maintain insect larval status; however, its cell membrane receptor has not been identified. Using the lepidopteran insect Helicoverpa armigera (cotton bollworm), a serious agricultural pest, as a model, we determined that receptor tyrosine kinases (RTKs) cadherin 96ca (CAD96CA) and fibroblast growth factor receptor homologue (FGFR1) function as JH cell membrane receptors by their roles in JH-regulated gene expression, larval status maintaining, rapid intracellular calcium increase, phosphorylation of JH intracellular receptor MET1 and cofactor Taiman, and high affinity to JH III. Gene knockout of Cad96ca and Fgfr1 by CRISPR/Cas9 in embryo and knockdown in various insect cells, and overexpression of CAD96CA and FGFR1 in mammalian HEK-293T cells all supported CAD96CA and FGFR1 transmitting JH signal as JH cell membrane receptors.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Joseph A Bisson, Miriam Gordillo ... Todd Evans
    Research Article

    Haploinsufficiency for GATA6 is associated with congenital heart disease (CHD) with variable comorbidity of pancreatic or diaphragm defects, although the etiology of disease is not well understood. Here, we used cardiac directed differentiation from human embryonic stem cells (hESCs) as a platform to study GATA6 function during early cardiogenesis. GATA6 loss-of-function hESCs had a profound impairment in cardiac progenitor cell (CPC) specification and cardiomyocyte (CM) generation due to early defects during the mesendoderm and lateral mesoderm patterning stages. Profiling by RNA-seq and CUT&RUN identified genes of the WNT and BMP programs regulated by GATA6 during early mesoderm patterning. Furthermore, interactome analysis detected GATA6 binding with developmental transcription factors and chromatin remodelers, suggesting cooperative regulation of cardiac lineage gene accessibility. We show that modulating WNT and BMP inputs during the first 48 hr of cardiac differentiation is sufficient to partially rescue CPC and CM defects in GATA6 heterozygous and homozygous mutant hESCs. This study provides evidence of the regulatory functions for GATA6 directing human precardiac mesoderm patterning during the earliest stages of cardiogenesis to further our understanding of haploinsufficiency causing CHD and the co-occurrence of cardiac and other organ defects caused by human GATA6 mutations.