FOXP2 exhibits neuron class specific expression, but is not required for multiple aspects of cortical histogenesis

  1. Ryan J Kast  Is a corresponding author
  2. Alexandra L Lanjewar
  3. Colton D Smith
  4. Pat Levitt  Is a corresponding author
  1. University of Southern California, United States
  2. Children's Hospital Los Angeles, United States

Abstract

The expression patterns of the transcription factor FOXP2 in the developing mammalian forebrain have been described, and some studies have tested the role of this protein in the development and function of specific forebrain circuits by diverse methods and in multiple species. Clinically, mutations in FOXP2 are associated with severe developmental speech disturbances, and molecular studies indicate that impairment of Foxp2 may lead to dysregulation of genes involved in forebrain histogenesis. Here, anatomical and molecular phenotypes of the cortical neuron populations that express FOXP2 were characterized in mice. Additionally, Foxp2 was removed from the developing mouse cortex at different prenatal ages using two Cre-recombinase driver lines. Detailed molecular and circuit analyses were undertaken to identify potential disruptions of development. Surprisingly, the results demonstrate that Foxp2 function is not required for many functions that it has been proposed to regulate, and therefore plays a more limited role in cortical development than previously thought.

Data availability

All numbers relating to quantitative experiments have been uploaded to Dryad. https://dx.doi.org/10.5061/dryad.6hd7bf7

The following data sets were generated

Article and author information

Author details

  1. Ryan J Kast

    Keck School of Medicine, University of Southern California, Los Angeles, United States
    For correspondence
    rkast@mit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3580-8811
  2. Alexandra L Lanjewar

    Keck School of Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Colton D Smith

    Keck School of Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Pat Levitt

    The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, United States
    For correspondence
    plevitt@med.usc.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Mental Health (MH067842)

  • Ryan J Kast
  • Alexandra L Lanjewar
  • Colton D Smith
  • Pat Levitt

Children's Hospital Los Angeles

  • Ryan J Kast

Simms/Mann Institute and Foundation

  • Pat Levitt

National Institutes of Health (T32GM113859)

  • Alexandra L Lanjewar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Constance L Cepko, Harvard Medical School, United States

Ethics

Animal experimentation: All animal procedures used in this study were in strict accordance with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Institutional Animal Care and Use Committee at Children's Hospital Los Angeles (Protocol #374-15).

Version history

  1. Received: September 14, 2018
  2. Accepted: May 14, 2019
  3. Accepted Manuscript published: May 17, 2019 (version 1)
  4. Version of Record published: June 12, 2019 (version 2)

Copyright

© 2019, Kast et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,114
    Page views
  • 362
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ryan J Kast
  2. Alexandra L Lanjewar
  3. Colton D Smith
  4. Pat Levitt
(2019)
FOXP2 exhibits neuron class specific expression, but is not required for multiple aspects of cortical histogenesis
eLife 8:e42012.
https://doi.org/10.7554/eLife.42012

Share this article

https://doi.org/10.7554/eLife.42012

Further reading

    1. Developmental Biology
    2. Neuroscience
    Kristine B Walhovd, Stine K Krogsrud ... Didac Vidal-Pineiro
    Research Article

    Human fetal development has been associated with brain health at later stages. It is unknown whether growth in utero, as indexed by birth weight (BW), relates consistently to lifespan brain characteristics and changes, and to what extent these influences are of a genetic or environmental nature. Here we show remarkably stable and lifelong positive associations between BW and cortical surface area and volume across and within developmental, aging and lifespan longitudinal samples (N = 5794, 4–82 y of age, w/386 monozygotic twins, followed for up to 8.3 y w/12,088 brain MRIs). In contrast, no consistent effect of BW on brain changes was observed. Partly environmental effects were indicated by analysis of twin BW discordance. In conclusion, the influence of prenatal growth on cortical topography is stable and reliable through the lifespan. This early-life factor appears to influence the brain by association of brain reserve, rather than brain maintenance. Thus, fetal influences appear omnipresent in the spacetime of the human brain throughout the human lifespan. Optimizing fetal growth may increase brain reserve for life, also in aging.

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article Updated

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.