Muscle specific stress fibers give rise to sarcomeres in cardiomyocytes

  1. Aidan M Fenix
  2. Abigail C Neininger
  3. Nilay Taneja
  4. Karren Hyde
  5. Mike R Visetsouk
  6. Ryan J Garde
  7. Baohong Liu
  8. Benjamin R Nixon
  9. Annabelle E Manalo
  10. Jason R Becker
  11. Scott W Crawley
  12. David Mansfield bader
  13. Matthew J Tyska
  14. Qi Liu
  15. Jennifer H Gutzman
  16. Dylan Tyler Burnette  Is a corresponding author
  1. Vanderbilt University, United States
  2. University of Wisconsin, Milwaukee, United States
  3. Vanderbilt University Medical Center, United States
  4. University of Toledo, United States

Abstract

The sarcomere is the contractile unit within cardiomyocytes driving heart muscle contraction. We sought to test the mechanisms regulating actin and myosin filament assembly during sarcomere formation. Therefore, we developed an assay using human cardiomyocytes to monitor sarcomere assembly. We report a population of muscle stress fibers, similar to actin arcs in non-muscle cells, which are essential sarcomere precursors. We show sarcomeric actin filaments arise directly from muscle stress fibers. This requires formins (e.g., FHOD3), non-muscle myosin IIA and non-muscle myosin IIB. Furthermore, we show short cardiac myosin II filaments grow to form ~1.5 µm long filaments that then 'stitch' together to form the stack of filaments at the core of the sarcomere (i.e., the A-band). A-band assembly is dependent on the proper organization of actin filaments and, as such, is also dependent on FHOD3 and myosin IIB. We use this experimental paradigm to present evidence for a unifying model of sarcomere assembly.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE119743. All other data generated or analysed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Aidan M Fenix

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Abigail C Neininger

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nilay Taneja

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Karren Hyde

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mike R Visetsouk

    Department of Biological Sciences, University of Wisconsin, Milwaukee, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ryan J Garde

    Department of Biological Sciences, University of Wisconsin, Milwaukee, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Baohong Liu

    Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Benjamin R Nixon

    Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1840-0179
  9. Annabelle E Manalo

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jason R Becker

    Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2107-8179
  11. Scott W Crawley

    Department of Biological Sciences, University of Toledo, Toledo, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. David Mansfield bader

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Matthew J Tyska

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Qi Liu

    Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Jennifer H Gutzman

    Department of Biological Sciences, University of Wisconsin, Milwaukee, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7725-6923
  16. Dylan Tyler Burnette

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    For correspondence
    dylan.burnette@vanderbilt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2571-7038

Funding

National Institute of General Medical Sciences (R35 GM125028)

  • Dylan Tyler Burnette

National Heart, Lung, and Blood Institute (F31 HL136081)

  • Aidan M Fenix

American Heart Association (16PRE29100014)

  • Aidan M Fenix

National Cancer Institute (P50 CA095103)

  • Dylan Tyler Burnette

American Heart Association (17SDG33460353)

  • Dylan Tyler Burnette

National Heart, Lung, and Blood Institute (RO1 HL037675)

  • David Mansfield bader

National Heart, Lung, and Blood Institute (K08 HL116803)

  • Jason R Becker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Fenix et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,566
    views
  • 793
    downloads
  • 82
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aidan M Fenix
  2. Abigail C Neininger
  3. Nilay Taneja
  4. Karren Hyde
  5. Mike R Visetsouk
  6. Ryan J Garde
  7. Baohong Liu
  8. Benjamin R Nixon
  9. Annabelle E Manalo
  10. Jason R Becker
  11. Scott W Crawley
  12. David Mansfield bader
  13. Matthew J Tyska
  14. Qi Liu
  15. Jennifer H Gutzman
  16. Dylan Tyler Burnette
(2018)
Muscle specific stress fibers give rise to sarcomeres in cardiomyocytes
eLife 7:e42144.
https://doi.org/10.7554/eLife.42144

Share this article

https://doi.org/10.7554/eLife.42144

Further reading

    1. Cell Biology
    2. Medicine
    Pengbo Chen, Bo Li ... Xinfeng Zheng
    Research Article

    Background:

    It has been reported that loss of PCBP2 led to increased reactive oxygen species (ROS) production and accelerated cell aging. Knockdown of PCBP2 in HCT116 cells leads to significant downregulation of fibroblast growth factor 2 (FGF2). Here, we tried to elucidate the intrinsic factors and potential mechanisms of bone marrow mesenchymal stromal cells (BMSCs) aging from the interactions among PCBP2, ROS, and FGF2.

    Methods:

    Unlabeled quantitative proteomics were performed to show differentially expressed proteins in the replicative senescent human bone marrow mesenchymal stromal cells (RS-hBMSCs). ROS and FGF2 were detected in the loss-and-gain cell function experiments of PCBP2. The functional recovery experiments were performed to verify whether PCBP2 regulates cell function through ROS/FGF2-dependent ways.

    Results:

    PCBP2 expression was significantly lower in P10-hBMSCs. Knocking down the expression of PCBP2 inhibited the proliferation while accentuated the apoptosis and cell arrest of RS-hBMSCs. PCBP2 silence could increase the production of ROS. On the contrary, overexpression of PCBP2 increased the viability of both P3-hBMSCs and P10-hBMSCs significantly. Meanwhile, overexpression of PCBP2 led to significantly reduced expression of FGF2. Overexpression of FGF2 significantly offset the effect of PCBP2 overexpression in P10-hBMSCs, leading to decreased cell proliferation, increased apoptosis, and reduced G0/G1 phase ratio of the cells.

    Conclusions:

    This study initially elucidates that PCBP2 as an intrinsic aging factor regulates the replicative senescence of hBMSCs through the ROS-FGF2 signaling axis.

    Funding:

    This study was supported by the National Natural Science Foundation of China (82172474).

    1. Cancer Biology
    2. Cell Biology
    Zuzana Outla, Gizem Oyman-Eyrilmez ... Martin Gregor
    Research Article

    The most common primary malignancy of the liver, hepatocellular carcinoma (HCC), is a heterogeneous tumor entity with high metastatic potential and complex pathophysiology. Increasing evidence suggests that tissue mechanics plays a critical role in tumor onset and progression. Here, we show that plectin, a major cytoskeletal crosslinker protein, plays a crucial role in mechanical homeostasis and mechanosensitive oncogenic signaling that drives hepatocarcinogenesis. Our expression analyses revealed elevated plectin levels in liver tumors, which correlated with poor prognosis for HCC patients. Using autochthonous and orthotopic mouse models we demonstrated that genetic and pharmacological inactivation of plectin potently suppressed the initiation and growth of HCC. Moreover, plectin targeting potently inhibited the invasion potential of human HCC cells and reduced their metastatic outgrowth in the lung. Proteomic and phosphoproteomic profiling linked plectin-dependent disruption of cytoskeletal networks to attenuation of oncogenic FAK, MAPK/Erk, and PI3K/Akt signatures. Importantly, by combining cell line-based and murine HCC models, we show that plectin inhibitor plecstatin-1 (PST) is well-tolerated and potently inhibits HCC progression. In conclusion, our study demonstrates that plectin-controlled cytoarchitecture is a key determinant of HCC development and suggests that pharmacologically induced disruption of mechanical homeostasis may represent a new therapeutic strategy for HCC treatment.