The GATOR complex regulates an essential response to meiotic double-stranded breaks in Drosophila

  1. Youheng Wei
  2. Lucia Bettedi
  3. Chun-Yuan Ting
  4. Kuikwon Kim
  5. Yingbiao Zhang
  6. Jiadong Cai
  7. Mary A Lilly  Is a corresponding author
  1. National Institute of Child Health and Human Development, National Institutes of Health, United States
  2. Yangzhou University, China

Abstract

The TORC1 regulator GATOR1/SEACIT controls meiotic entry and early meiotic events in yeast. However, how metabolic pathways influence meiotic progression in metazoans remains poorly understood. Here we examine the role of the TORC1 regulators GATOR1 and GATOR2 in the response to meiotic double-stranded breaks (DSB) during Drosophila oogenesis. We find that in mutants of the GATOR2 component mio, meiotic DSBs trigger the constitutive downregulation of TORC1 activity and a permanent arrest in oocyte growth. Conversely, in GATOR1 mutants, high TORC1 activity results in the delayed repair of meiotic DSBs and the hyperactivation of p53. Unexpectedly, we found that GATOR1 inhibits retrotransposon expression in the presence of meiotic DSBs in a pathway that functions in parallel to p53. Thus, our studies have revealed a link between oocyte metabolism, the repair of meiotic DSBs and retrotransposon expression.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Youheng Wei

    Cell Biology and Structural Biology Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lucia Bettedi

    Cell Biology and Structural Biology Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Chun-Yuan Ting

    Cell Biology and Structural Biology Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2302-4203
  4. Kuikwon Kim

    Cell Biology and Structural Biology Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yingbiao Zhang

    Cell Biology and Structural Biology Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jiadong Cai

    College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Mary A Lilly

    Cell Biology and Structural Biology Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    For correspondence
    lillym@helix.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1564-619X

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (Intramural Program HD00163 16)

  • Mary A Lilly

National Science Foundation of Jiangsu Province (BK20181456)

  • Youheng Wei

National Natural Science Foundation of China (31872287)

  • Youheng Wei

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,754
    views
  • 317
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Youheng Wei
  2. Lucia Bettedi
  3. Chun-Yuan Ting
  4. Kuikwon Kim
  5. Yingbiao Zhang
  6. Jiadong Cai
  7. Mary A Lilly
(2019)
The GATOR complex regulates an essential response to meiotic double-stranded breaks in Drosophila
eLife 8:e42149.
https://doi.org/10.7554/eLife.42149

Share this article

https://doi.org/10.7554/eLife.42149

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Thi Thom Mac, Teddy Fauquier ... Thierry Brue
    Research Article

    Deficient Anterior pituitary with common Variable Immune Deficiency (DAVID) syndrome results from NFKB2 heterozygous mutations, causing adrenocorticotropic hormone deficiency (ACTHD) and primary hypogammaglobulinemia. While NFKB signaling plays a crucial role in the immune system, its connection to endocrine symptoms is unclear. We established a human disease model to investigate the role of NFKB2 in pituitary development by creating pituitary organoids from CRISPR/Cas9-edited human induced pluripotent stem cells (hiPSCs). Introducing homozygous TBX19K146R/K146R missense pathogenic variant in hiPSC, an allele found in congenital isolated ACTHD, led to a strong reduction of corticotrophs number in pituitary organoids. Then, we characterized the development of organoids harboring NFKB2D865G/D865G mutations found in DAVID patients. NFKB2D865G/D865G mutation acted at different levels of development with mutant organoids displaying changes in the expression of genes involved on pituitary progenitor generation (HESX1, PITX1, LHX3), hypothalamic secreted factors (BMP4, FGF8, FGF10), epithelial-to-mesenchymal transition, lineage precursors development (TBX19, POU1F1) and corticotrophs terminal differentiation (PCSK1, POMC), and showed drastic reduction in the number of corticotrophs. Our results provide strong evidence for the direct role of NFKB2 mutations in the endocrine phenotype observed in patients leading to a new classification of a NFKB2 variant of previously unknown clinical significance as pathogenic in pituitary development.

    1. Developmental Biology
    2. Genetics and Genomics
    Debashish U Menon, Prabuddha Chakraborty ... Terry Magnuson
    Research Article

    We present evidence implicating the BAF (BRG1/BRM Associated Factor) chromatin remodeler in meiotic sex chromosome inactivation (MSCI). By immunofluorescence (IF), the putative BAF DNA binding subunit, ARID1A (AT-rich Interaction Domain 1 a), appeared enriched on the male sex chromosomes during diplonema of meiosis I. Germ cells showing a Cre-induced loss of ARID1A arrested in pachynema and failed to repress sex-linked genes, indicating a defective MSCI. Mutant sex chromosomes displayed an abnormal presence of elongating RNA polymerase II coupled with an overall increase in chromatin accessibility detectable by ATAC-seq. We identified a role for ARID1A in promoting the preferential enrichment of the histone variant, H3.3, on the sex chromosomes, a known hallmark of MSCI. Without ARID1A, the sex chromosomes appeared depleted of H3.3 at levels resembling autosomes. Higher resolution analyses by CUT&RUN revealed shifts in sex-linked H3.3 associations from discrete intergenic sites and broader gene-body domains to promoters in response to the loss of ARID1A. Several sex-linked sites displayed ectopic H3.3 occupancy that did not co-localize with DMC1 (DNA meiotic recombinase 1). This observation suggests a requirement for ARID1A in DMC1 localization to the asynapsed sex chromatids. We conclude that ARID1A-directed H3.3 localization influences meiotic sex chromosome gene regulation and DNA repair.