Screening for insulin-independent pathways that modulate glucose homeostasis identifies androgen receptor antagonists

  1. Sri Teja Mullapudi
  2. Christian SM Helker
  3. Giulia LM Boezio
  4. Hans-Martin Maischein
  5. Anna M Sokol
  6. Stefan Guenther
  7. Hiroki Matsuda
  8. Stefan Kubicek
  9. Johannes Graumann
  10. Yu Hsuan Carol Yang
  11. Didier YR Stainier  Is a corresponding author
  1. Max Planck Institute for Heart and Lung Research, Germany
  2. CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria

Abstract

Pathways modulating glucose homeostasis independently of insulin would open new avenues to combat insulin resistance and diabetes. Here, we report the establishment, characterization and use of a vertebrate 'insulin-free' model to identify insulin-independent modulators of glucose metabolism. insulin knockout zebrafish recapitulate core characteristics of diabetes and survive only up to larval stages. Utilizing a highly efficient endoderm transplant technique, we generated viable chimeric adults that provide the large numbers of insulin mutant larvae required for our screening platform. Using glucose as a disease-relevant readout, we screened 2233 molecules and identified 3 that consistently reduced glucose levels in insulin mutants. Most significantly, we uncovered an insulin-independent beneficial role for androgen receptor antagonism in hyperglycemia, mostly by reducing fasting glucose levels. Our study proposes therapeutic roles for androgen signaling in diabetes and, more broadly, offers a novel in vivo model for rapid screening and decoupling of insulin-dependent and -independent mechanisms.

Data availability

Microarray and RNA-Seq data have been deposited in the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-7282 and E-MTAB-7283 respectively.

The following data sets were generated

Article and author information

Author details

  1. Sri Teja Mullapudi

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  2. Christian SM Helker

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  3. Giulia LM Boezio

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  4. Hans-Martin Maischein

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  5. Anna M Sokol

    Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  6. Stefan Guenther

    ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  7. Hiroki Matsuda

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8639-2719
  8. Stefan Kubicek

    Platform Austria for Chemical Biology, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0855-8343
  9. Johannes Graumann

    Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  10. Yu Hsuan Carol Yang

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  11. Didier YR Stainier

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    For correspondence
    Didier.Stainier@mpi-bn.mpg.de
    Competing interests
    Didier YR Stainier, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0382-0026

Funding

Max-Planck-Gesellschaft (Open-access funding)

  • Sri Teja Mullapudi
  • Christian SM Helker
  • Giulia LM Boezio
  • Hans-Martin Maischein
  • Anna M Sokol
  • Stefan Guenther
  • Hiroki Matsuda
  • Johannes Graumann
  • Yu Hsuan Carol Yang
  • Didier YR Stainier

Deutsches Zentrum für Herz-Kreislaufforschung

  • Anna M Sokol
  • Johannes Graumann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Zebrafish husbandry was performed under standard conditions in accordance with institutional (MPG) and national ethical and animal welfare guidelines approved by the ethics committee for animal experiments at the Regierungspräsidium Darmstadt, Germany (permit numbers B2/1017, B2/1041, B2/1089, B2/1138 and B2/Anz. 1007).

Reviewing Editor

  1. Richard M White, Memorial Sloan Kettering Cancer Center, United States

Publication history

  1. Received: September 20, 2018
  2. Accepted: December 3, 2018
  3. Accepted Manuscript published: December 6, 2018 (version 1)
  4. Version of Record published: December 19, 2018 (version 2)

Copyright

© 2018, Mullapudi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,662
    Page views
  • 440
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sri Teja Mullapudi
  2. Christian SM Helker
  3. Giulia LM Boezio
  4. Hans-Martin Maischein
  5. Anna M Sokol
  6. Stefan Guenther
  7. Hiroki Matsuda
  8. Stefan Kubicek
  9. Johannes Graumann
  10. Yu Hsuan Carol Yang
  11. Didier YR Stainier
(2018)
Screening for insulin-independent pathways that modulate glucose homeostasis identifies androgen receptor antagonists
eLife 7:e42209.
https://doi.org/10.7554/eLife.42209

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Mathi Thiruppathy et al.
    Short Report

    Whereas no known living vertebrate possesses gills derived from the jaw-forming mandibular arch, it has been proposed that the jaw arose through modifications of an ancestral mandibular gill. Here, we show that the zebrafish pseudobranch, which regulates blood pressure in the eye, develops from mandibular arch mesenchyme and first pouch epithelia and shares gene expression, enhancer utilization, and developmental gata3 dependence with the gills. Combined with work in chondrichthyans, our findings in a teleost fish point to the presence of a mandibular pseudobranch with serial homology to gills in the last common ancestor of jawed vertebrates, consistent with a gill origin of vertebrate jaws.

    1. Cell Biology
    2. Developmental Biology
    Katelyn J Hoff et al.
    Research Article Updated

    Heterozygous, missense mutations in α- or β-tubulin genes are associated with a wide range of human brain malformations, known as tubulinopathies. We seek to understand whether a mutation’s impact at the molecular and cellular levels scale with the severity of brain malformation. Here, we focus on two mutations at the valine 409 residue of TUBA1A, V409I, and V409A, identified in patients with pachygyria or lissencephaly, respectively. We find that ectopic expression of TUBA1A-V409I/A mutants disrupt neuronal migration in mice and promote excessive neurite branching and a decrease in the number of neurite retraction events in primary rat neuronal cultures. These neuronal phenotypes are accompanied by increased microtubule acetylation and polymerization rates. To determine the molecular mechanisms, we modeled the V409I/A mutants in budding yeast and found that they promote intrinsically faster microtubule polymerization rates in cells and in reconstitution experiments with purified tubulin. In addition, V409I/A mutants decrease the recruitment of XMAP215/Stu2 to plus ends in budding yeast and ablate tubulin binding to TOG (tumor overexpressed gene) domains. In each assay tested, the TUBA1A-V409I mutant exhibits an intermediate phenotype between wild type and the more severe TUBA1A-V409A, reflecting the severity observed in brain malformations. Together, our data support a model in which the V409I/A mutations disrupt microtubule regulation typically conferred by XMAP215 proteins during neuronal morphogenesis and migration, and this impact on tubulin activity at the molecular level scales with the impact at the cellular and tissue levels.