Screening for insulin-independent pathways that modulate glucose homeostasis identifies androgen receptor antagonists

  1. Sri Teja Mullapudi
  2. Christian SM Helker
  3. Giulia LM Boezio
  4. Hans-Martin Maischein
  5. Anna M Sokol
  6. Stefan Guenther
  7. Hiroki Matsuda
  8. Stefan Kubicek
  9. Johannes Graumann
  10. Yu Hsuan Carol Yang
  11. Didier YR Stainier  Is a corresponding author
  1. Max Planck Institute for Heart and Lung Research, Germany
  2. CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria

Abstract

Pathways modulating glucose homeostasis independently of insulin would open new avenues to combat insulin resistance and diabetes. Here, we report the establishment, characterization and use of a vertebrate 'insulin-free' model to identify insulin-independent modulators of glucose metabolism. insulin knockout zebrafish recapitulate core characteristics of diabetes and survive only up to larval stages. Utilizing a highly efficient endoderm transplant technique, we generated viable chimeric adults that provide the large numbers of insulin mutant larvae required for our screening platform. Using glucose as a disease-relevant readout, we screened 2233 molecules and identified 3 that consistently reduced glucose levels in insulin mutants. Most significantly, we uncovered an insulin-independent beneficial role for androgen receptor antagonism in hyperglycemia, mostly by reducing fasting glucose levels. Our study proposes therapeutic roles for androgen signaling in diabetes and, more broadly, offers a novel in vivo model for rapid screening and decoupling of insulin-dependent and -independent mechanisms.

Data availability

Microarray and RNA-Seq data have been deposited in the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-7282 and E-MTAB-7283 respectively.

The following data sets were generated

Article and author information

Author details

  1. Sri Teja Mullapudi

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  2. Christian SM Helker

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  3. Giulia LM Boezio

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  4. Hans-Martin Maischein

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  5. Anna M Sokol

    Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  6. Stefan Guenther

    ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  7. Hiroki Matsuda

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8639-2719
  8. Stefan Kubicek

    Platform Austria for Chemical Biology, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0855-8343
  9. Johannes Graumann

    Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  10. Yu Hsuan Carol Yang

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  11. Didier YR Stainier

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    For correspondence
    Didier.Stainier@mpi-bn.mpg.de
    Competing interests
    Didier YR Stainier, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0382-0026

Funding

Max-Planck-Gesellschaft (Open-access funding)

  • Sri Teja Mullapudi
  • Christian SM Helker
  • Giulia LM Boezio
  • Hans-Martin Maischein
  • Anna M Sokol
  • Stefan Guenther
  • Hiroki Matsuda
  • Johannes Graumann
  • Yu Hsuan Carol Yang
  • Didier YR Stainier

Deutsches Zentrum für Herz-Kreislaufforschung

  • Anna M Sokol
  • Johannes Graumann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard M White, Memorial Sloan Kettering Cancer Center, United States

Ethics

Animal experimentation: Zebrafish husbandry was performed under standard conditions in accordance with institutional (MPG) and national ethical and animal welfare guidelines approved by the ethics committee for animal experiments at the Regierungspräsidium Darmstadt, Germany (permit numbers B2/1017, B2/1041, B2/1089, B2/1138 and B2/Anz. 1007).

Version history

  1. Received: September 20, 2018
  2. Accepted: December 3, 2018
  3. Accepted Manuscript published: December 6, 2018 (version 1)
  4. Version of Record published: December 19, 2018 (version 2)

Copyright

© 2018, Mullapudi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,105
    views
  • 512
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sri Teja Mullapudi
  2. Christian SM Helker
  3. Giulia LM Boezio
  4. Hans-Martin Maischein
  5. Anna M Sokol
  6. Stefan Guenther
  7. Hiroki Matsuda
  8. Stefan Kubicek
  9. Johannes Graumann
  10. Yu Hsuan Carol Yang
  11. Didier YR Stainier
(2018)
Screening for insulin-independent pathways that modulate glucose homeostasis identifies androgen receptor antagonists
eLife 7:e42209.
https://doi.org/10.7554/eLife.42209

Share this article

https://doi.org/10.7554/eLife.42209

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.

    1. Developmental Biology
    2. Evolutionary Biology
    Zhuqing Wang, Yue Wang ... Wei Yan
    Research Article

    Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.