Perception in autism does not adhere to Weber's law
Abstract
Perceptual atypicalities are a widely acknowledged but poorly understood feature of autism. We demonstrate here a striking violation of one of the most adaptive psychophysical computations - Weber's law - in high-functioning individuals with autism. JNDs based on the best-fitting psychometric functions were measured for size visual judgments (Exp. 1), weight haptic discrimination (Exp. 2), and illusive perception of weight (brightness-weight illusion; Exp. 3). Results for the typically developed group confirmed Weber's law, demonstrating a linear increase in JNDs with intensity, resulting in constant fractions across intensities. The results for the ASD, in contrast, showed no scaling of JNDs with intensity; instead, fractions decreased linearly with intensity. In striking contrast to its consistency in typical perception, Weber's law does not hold for visual and haptic perception in autism. These robust modulations in psychophysical computations, demonstrated for different domains of perception, suggest a modality-independent, low-level mechanism driving altered perception in autism.
Data availability
Data can be found in https://osf.io/ckmhq/.
Article and author information
Author details
Funding
Israel Science Foundation (967/14)
- Bat-Sheva Hadad
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: All procedures were approved by the Ethical Committee of the Faculty of Education, University of Haifa (Perceptual Processing in ASD: approval number 016/15). Adults who were students at the University of Haifa received course credit, children received a gift card, and individuals with ASD were paid 50NIS per hour to compensate them for their time.
Copyright
© 2019, Hadad & Schwartz
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,142
- views
-
- 565
- downloads
-
- 31
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Time estimation is an essential prerequisite underlying various cognitive functions. Previous studies identified ‘sequential firing’ and ‘activity ramps’ as the primary neuron activity patterns in the medial frontal cortex (mPFC) that could convey information regarding time. However, the relationship between these patterns and the timing behavior has not been fully understood. In this study, we utilized in vivo calcium imaging of mPFC in rats performing a timing task. We observed cells that showed selective activation at trial start, end, or during the timing interval. By aligning long-term time-lapse datasets, we discovered that sequential patterns of time coding were stable over weeks, while cells coding for trial start or end showed constant dynamism. Furthermore, with a novel behavior design that allowed the animal to determine individual trial interval, we were able to demonstrate that real-time adjustment in the sequence procession speed closely tracked the trial-to-trial interval variations. And errors in the rats’ timing behavior can be primarily attributed to the premature ending of the time sequence. Together, our data suggest that sequential activity maybe a stable neural substrate that represents time under physiological conditions. Furthermore, our results imply the existence of a unique cell type in the mPFC that participates in the time-related sequences. Future characterization of this cell type could provide important insights in the neural mechanism of timing and related cognitive functions.
-
- Neuroscience
Granule cells of the cerebellum make up to 175,000 excitatory synapses on a single Purkinje cell, encoding the wide variety of information from the mossy fibre inputs into the cerebellar cortex. The granule cell axon is made of an ascending portion and a long parallel fibre extending at right angles, an architecture suggesting that synapses formed by the two segments of the axon could encode different information. There are controversial indications that ascending axon (AA) and parallel fibre (PF) synapse properties and modalities of plasticity are different. We tested the hypothesis that AA and PF synapses encode different information, and that the association of these distinct inputs to Purkinje cells might be relevant to the circuit and trigger plasticity, similar to the coincident activation of PF and climbing fibre inputs. Here, by recording synaptic currents in Purkinje cells from either proximal or distal granule cells (mostly AA and PF synapses, respectively), we describe a new form of associative plasticity between these two distinct granule cell inputs. We show for the first time that synchronous AA and PF repetitive train stimulation, with inhibition intact, triggers long-term potentiation (LTP) at AA synapses specifically. Furthermore, the timing of the presentation of the two inputs controls the outcome of plasticity and induction requires NMDAR and mGluR1 activation. The long length of the PFs allows us to preferentially activate the two inputs independently, and despite a lack of morphological reconstruction of the connections, these observations reinforce the suggestion that AA and PF synapses have different coding capabilities and plasticity that is associative, enabling effective association of information transmitted via granule cells.