Perception in autism does not adhere to Weber's law

  1. Bat-Sheva Hadad  Is a corresponding author
  2. Sivan Schwartz
  1. University of Haifa, Israel

Abstract

Perceptual atypicalities are a widely acknowledged but poorly understood feature of autism. We demonstrate here a striking violation of one of the most adaptive psychophysical computations - Weber's law - in high-functioning individuals with autism. JNDs based on the best-fitting psychometric functions were measured for size visual judgments (Exp. 1), weight haptic discrimination (Exp. 2), and illusive perception of weight (brightness-weight illusion; Exp. 3). Results for the typically developed group confirmed Weber's law, demonstrating a linear increase in JNDs with intensity, resulting in constant fractions across intensities. The results for the ASD, in contrast, showed no scaling of JNDs with intensity; instead, fractions decreased linearly with intensity. In striking contrast to its consistency in typical perception, Weber's law does not hold for visual and haptic perception in autism. These robust modulations in psychophysical computations, demonstrated for different domains of perception, suggest a modality-independent, low-level mechanism driving altered perception in autism.

Data availability

Data can be found in https://osf.io/ckmhq/.

The following data sets were generated
    1. Hadad B-S
    (2018) Weber in Autism
    Open Science Framework, ckmhq.

Article and author information

Author details

  1. Bat-Sheva Hadad

    Edmond J Safra Brain Research Center, University of Haifa, Haifa, Israel
    For correspondence
    bhadad22@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3159-8696
  2. Sivan Schwartz

    Department of Psychology, University of Haifa, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.

Funding

Israel Science Foundation (967/14)

  • Bat-Sheva Hadad

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All procedures were approved by the Ethical Committee of the Faculty of Education, University of Haifa (Perceptual Processing in ASD: approval number 016/15). Adults who were students at the University of Haifa received course credit, children received a gift card, and individuals with ASD were paid 50NIS per hour to compensate them for their time.

Reviewing Editor

  1. Marisa Carrasco, New York University, United States

Publication history

  1. Received: September 21, 2018
  2. Accepted: March 1, 2019
  3. Accepted Manuscript published: March 4, 2019 (version 1)
  4. Version of Record published: March 15, 2019 (version 2)

Copyright

© 2019, Hadad & Schwartz

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,239
    Page views
  • 494
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bat-Sheva Hadad
  2. Sivan Schwartz
(2019)
Perception in autism does not adhere to Weber's law
eLife 8:e42223.
https://doi.org/10.7554/eLife.42223

Further reading

    1. Neuroscience
    Andrea Alamia, Lucie Terral ... Rufin VanRullen
    Research Article Updated

    Previous research has associated alpha-band [8–12 Hz] oscillations with inhibitory functions: for instance, several studies showed that visual attention increases alpha-band power in the hemisphere ipsilateral to the attended location. However, other studies demonstrated that alpha oscillations positively correlate with visual perception, hinting at different processes underlying their dynamics. Here, using an approach based on traveling waves, we demonstrate that there are two functionally distinct alpha-band oscillations propagating in different directions. We analyzed EEG recordings from three datasets of human participants performing a covert visual attention task (one new dataset with N = 16, two previously published datasets with N = 16 and N = 31). Participants were instructed to detect a brief target by covertly attending to the screen’s left or right side. Our analysis reveals two distinct processes: allocating attention to one hemifield increases top-down alpha-band waves propagating from frontal to occipital regions ipsilateral to the attended location, both with and without visual stimulation. These top-down oscillatory waves correlate positively with alpha-band power in frontal and occipital regions. Yet, different alpha-band waves propagate from occipital to frontal regions and contralateral to the attended location. Crucially, these forward waves were present only during visual stimulation, suggesting a separate mechanism related to visual processing. Together, these results reveal two distinct processes reflected by different propagation directions, demonstrating the importance of considering oscillations as traveling waves when characterizing their functional role.

    1. Neuroscience
    Benjamin D Pedigo, Mike Powell ... Joshua T Vogelstein
    Research Article

    Comparing connectomes can help explain how neural connectivity is related to genetics, disease, development, learning, and behavior. However, making statistical inferences about the significance and nature of differences between two networks is an open problem, and such analysis has not been extensively applied to nanoscale connectomes. Here, we investigate this problem via a case study on the bilateral symmetry of a larval Drosophila brain connectome. We translate notions of'bilateral symmetry' to generative models of the network structure of the left and right hemispheres, allowing us to test and refine our understanding of symmetry. We find significant differences in connection probabilities both across the entire left and right networks and between specific cell types. By rescaling connection probabilities or removing certain edges based on weight, we also present adjusted definitions of bilateral symmetry exhibited by this connectome. This work shows how statistical inferences from networks can inform the study of connectomes, facilitating future comparisons of neural structures.