Anterior insular cortex plays a critical role in interoceptive attention

  1. Xingchao Wang
  2. Qiong Wu
  3. Laura Egan
  4. Xiaosi Gu
  5. Pinan Liu
  6. Hong Gu
  7. Yihong Yang
  8. Jing Luo
  9. Yanhong Wu  Is a corresponding author
  10. Zhixian Gao  Is a corresponding author
  11. Jin Fan  Is a corresponding author
  1. Beijing Tiantan Hospital, Capital Medical University, China
  2. Capital Normal University, China
  3. Queens College, The City University of New York, United States
  4. Icahn School of Medicine at Mount Sinai, United States
  5. National Institute on Drug Abuse, United States
  6. Peking University, China

Abstract

Accumulating evidence indicates that the anterior insular cortex (AIC) mediates interoceptive attention, which refers to attention towards physiological signals arising from the body. However, the necessity of the AIC in this process has not been demonstrated. Using a novel task that directs attention toward breathing rhythm, we assessed the involvement of the AIC in interoceptive attention in healthy participants using functional magnetic resonance imaging and examined the necessity of the AIC in interoceptive attention in patients with AIC lesions. Results showed that interoceptive attention was associated with increased AIC activation, as well as enhanced coupling between the AIC and somatosensory areas along with reduced coupling between the AIC and visual sensory areas. In addition, AIC activation was predictive of individual differences in interoceptive accuracy. Importantly, AIC lesion patients showed disrupted interoceptive discrimination accuracy and sensitivity. These results provide compelling evidence that AIC plays a critical role in interoceptive attention.

Data availability

Source data have been deposited in Dyrad, including behavioral data, fMRI data, and lesion patient data. Our Dyrad DOI is: doi:10.5061/dryad.5sj852c

The following data sets were generated

Article and author information

Author details

  1. Xingchao Wang

    Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Qiong Wu

    School of Psychology, Capital Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Laura Egan

    Department of Psychology, Queens College, The City University of New York, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xiaosi Gu

    Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Pinan Liu

    Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Hong Gu

    Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yihong Yang

    Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jing Luo

    School of Psychology, Capital Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yanhong Wu

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    For correspondence
    wuyh@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  10. Zhixian Gao

    Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
    For correspondence
    gaozx@ccmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  11. Jin Fan

    Department of Psychology, Queens College, The City University of New York, New York, United States
    For correspondence
    jin.fan@qc.cuny.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9630-8330

Funding

National Natural Science Foundation of China (81729001)

  • Jin Fan

China Postdoctoral Science Foundation (2016M600835)

  • Qiong Wu

National Institute on Drug Abuse (1R01DA043695)

  • Xiaosi Gu

National Natural Science Foundation of China (81328008)

  • Jin Fan

National Natural Science Foundation of China (61690205)

  • Yanhong Wu

National Institute of Mental Health (R01MH094305)

  • Jin Fan

Research grant of 973 (973-2015CB351800)

  • Yanhong Wu

National Natural Science Foundation of China (31771205)

  • Yanhong Wu

National Institute on Drug Abuse (Intramul Research Program)

  • Yihong Yang

Brain research Project of Beijing (Z16110002616014)

  • Pinan Liu

Beijing Municipal Administration of Hospital Youth programs (QML20170503)

  • Xingchao Wang

National Natural Science Foundation of China (81600931)

  • Xingchao Wang

Capital Health Development Research Project of Beijing (2016-4-1074)

  • Xingchao Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants in fMRI study and in lesion study were gave written informed consent in accordance with the procedures and protocols approved by The Human Subjects Review Committee of Peking University and by The Institutional Review Board of the Beijing Tiantan Hospital, Capital Medical University, respectively.

Reviewing Editor

  1. Klaas Enno Stephan, University of Zurich and ETH Zurich, Switzerland

Version history

  1. Received: September 24, 2018
  2. Accepted: April 13, 2019
  3. Accepted Manuscript published: April 15, 2019 (version 1)
  4. Version of Record published: April 29, 2019 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 12,414
    Page views
  • 944
    Downloads
  • 70
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xingchao Wang
  2. Qiong Wu
  3. Laura Egan
  4. Xiaosi Gu
  5. Pinan Liu
  6. Hong Gu
  7. Yihong Yang
  8. Jing Luo
  9. Yanhong Wu
  10. Zhixian Gao
  11. Jin Fan
(2019)
Anterior insular cortex plays a critical role in interoceptive attention
eLife 8:e42265.
https://doi.org/10.7554/eLife.42265

Further reading

    1. Neuroscience
    Amanda J González Segarra, Gina Pontes ... Kristin Scott
    Research Article

    Consumption of food and water is tightly regulated by the nervous system to maintain internal nutrient homeostasis. Although generally considered independently, interactions between hunger and thirst drives are important to coordinate competing needs. In Drosophila, four neurons called the interoceptive subesophageal zone neurons (ISNs) respond to intrinsic hunger and thirst signals to oppositely regulate sucrose and water ingestion. Here, we investigate the neural circuit downstream of the ISNs to examine how ingestion is regulated based on internal needs. Utilizing the recently available fly brain connectome, we find that the ISNs synapse with a novel cell-type bilateral T-shaped neuron (BiT) that projects to neuroendocrine centers. In vivo neural manipulations revealed that BiT oppositely regulates sugar and water ingestion. Neuroendocrine cells downstream of ISNs include several peptide-releasing and peptide-sensing neurons, including insulin producing cells (IPCs), crustacean cardioactive peptide (CCAP) neurons, and CCHamide-2 receptor isoform RA (CCHa2R-RA) neurons. These neurons contribute differentially to ingestion of sugar and water, with IPCs and CCAP neurons oppositely regulating sugar and water ingestion, and CCHa2R-RA neurons modulating only water ingestion. Thus, the decision to consume sugar or water occurs via regulation of a broad peptidergic network that integrates internal signals of nutritional state to generate nutrient-specific ingestion.

    1. Neuroscience
    Lucas Y Tian, Timothy L Warren ... Michael S Brainard
    Research Article

    Complex behaviors depend on the coordinated activity of neural ensembles in interconnected brain areas. The behavioral function of such coordination, often measured as co-fluctuations in neural activity across areas, is poorly understood. One hypothesis is that rapidly varying co-fluctuations may be a signature of moment-by-moment task-relevant influences of one area on another. We tested this possibility for error-corrective adaptation of birdsong, a form of motor learning which has been hypothesized to depend on the top-down influence of a higher-order area, LMAN (lateral magnocellular nucleus of the anterior nidopallium), in shaping moment-by-moment output from a primary motor area, RA (robust nucleus of the arcopallium). In paired recordings of LMAN and RA in singing birds, we discovered a neural signature of a top-down influence of LMAN on RA, quantified as an LMAN-leading co-fluctuation in activity between these areas. During learning, this co-fluctuation strengthened in a premotor temporal window linked to the specific movement, sequential context, and acoustic modification associated with learning. Moreover, transient perturbation of LMAN activity specifically within this premotor window caused rapid occlusion of pitch modifications, consistent with LMAN conveying a temporally localized motor-biasing signal. Combined, our results reveal a dynamic top-down influence of LMAN on RA that varies on the rapid timescale of individual movements and is flexibly linked to contexts associated with learning. This finding indicates that inter-area co-fluctuations can be a signature of dynamic top-down influences that support complex behavior and its adaptation.