Anterior insular cortex plays a critical role in interoceptive attention

  1. Xingchao Wang
  2. Qiong Wu
  3. Laura Egan
  4. Xiaosi Gu
  5. Pinan Liu
  6. Hong Gu
  7. Yihong Yang
  8. Jing Luo
  9. Yanhong Wu  Is a corresponding author
  10. Zhixian Gao  Is a corresponding author
  11. Jin Fan  Is a corresponding author
  1. Beijing Tiantan Hospital, Capital Medical University, China
  2. Capital Normal University, China
  3. Queens College, The City University of New York, United States
  4. Icahn School of Medicine at Mount Sinai, United States
  5. National Institute on Drug Abuse, United States
  6. Peking University, China

Abstract

Accumulating evidence indicates that the anterior insular cortex (AIC) mediates interoceptive attention, which refers to attention towards physiological signals arising from the body. However, the necessity of the AIC in this process has not been demonstrated. Using a novel task that directs attention toward breathing rhythm, we assessed the involvement of the AIC in interoceptive attention in healthy participants using functional magnetic resonance imaging and examined the necessity of the AIC in interoceptive attention in patients with AIC lesions. Results showed that interoceptive attention was associated with increased AIC activation, as well as enhanced coupling between the AIC and somatosensory areas along with reduced coupling between the AIC and visual sensory areas. In addition, AIC activation was predictive of individual differences in interoceptive accuracy. Importantly, AIC lesion patients showed disrupted interoceptive discrimination accuracy and sensitivity. These results provide compelling evidence that AIC plays a critical role in interoceptive attention.

Data availability

Source data have been deposited in Dyrad, including behavioral data, fMRI data, and lesion patient data. Our Dyrad DOI is: doi:10.5061/dryad.5sj852c

The following data sets were generated

Article and author information

Author details

  1. Xingchao Wang

    Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Qiong Wu

    School of Psychology, Capital Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Laura Egan

    Department of Psychology, Queens College, The City University of New York, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xiaosi Gu

    Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Pinan Liu

    Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Hong Gu

    Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yihong Yang

    Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jing Luo

    School of Psychology, Capital Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yanhong Wu

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    For correspondence
    wuyh@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  10. Zhixian Gao

    Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
    For correspondence
    gaozx@ccmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  11. Jin Fan

    Department of Psychology, Queens College, The City University of New York, New York, United States
    For correspondence
    jin.fan@qc.cuny.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9630-8330

Funding

National Natural Science Foundation of China (81729001)

  • Jin Fan

China Postdoctoral Science Foundation (2016M600835)

  • Qiong Wu

National Institute on Drug Abuse (1R01DA043695)

  • Xiaosi Gu

National Natural Science Foundation of China (81328008)

  • Jin Fan

National Natural Science Foundation of China (61690205)

  • Yanhong Wu

National Institute of Mental Health (R01MH094305)

  • Jin Fan

Research grant of 973 (973-2015CB351800)

  • Yanhong Wu

National Natural Science Foundation of China (31771205)

  • Yanhong Wu

National Institute on Drug Abuse (Intramul Research Program)

  • Yihong Yang

Brain research Project of Beijing (Z16110002616014)

  • Pinan Liu

Beijing Municipal Administration of Hospital Youth programs (QML20170503)

  • Xingchao Wang

National Natural Science Foundation of China (81600931)

  • Xingchao Wang

Capital Health Development Research Project of Beijing (2016-4-1074)

  • Xingchao Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants in fMRI study and in lesion study were gave written informed consent in accordance with the procedures and protocols approved by The Human Subjects Review Committee of Peking University and by The Institutional Review Board of the Beijing Tiantan Hospital, Capital Medical University, respectively.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,135
    downloads
  • 114
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xingchao Wang
  2. Qiong Wu
  3. Laura Egan
  4. Xiaosi Gu
  5. Pinan Liu
  6. Hong Gu
  7. Yihong Yang
  8. Jing Luo
  9. Yanhong Wu
  10. Zhixian Gao
  11. Jin Fan
(2019)
Anterior insular cortex plays a critical role in interoceptive attention
eLife 8:e42265.
https://doi.org/10.7554/eLife.42265

Share this article

https://doi.org/10.7554/eLife.42265

Further reading

    1. Neuroscience
    Jean-François Brunet
    Review Article

    Historically, the creation of the parasympathetic division of the autonomic nervous system of the vertebrates is inextricably linked to the unification of the cranial and sacral autonomic outflows. There is an intriguing disproportion between the entrenchment of the notion of a ‘cranio-sacral’ pathway, which informs every textbook schematic of the autonomic nervous system since the early XXth century, and the wobbliness of its two roots: an anatomical detail overinterpreted by Walter Holbrook Gaskell (the ‘gap’ between the lumbar and sacral outflows), on which John Newport Langley grafted a piece of physiology (a supposed antagonism of these two outflows on external genitals), repeatedly questioned since, to little avail. I retrace the birth of a flawed scientific concept (the cranio-sacral outflow) and the way in which it ossified instead of dissipated. Then, I suggest that the critique of the ‘cranio-sacral outflow’ invites, in turn, a radical deconstruction of the very notion of a ‘parasympathetic’ outflow, and a more realistic description of the autonomic nervous system.

    1. Developmental Biology
    2. Neuroscience
    Mahima Bose, Ishita Talwar ... Shubha Tole
    Research Article

    In the developing vertebrate central nervous system, neurons and glia typically arise sequentially from common progenitors. Here, we report that the transcription factor Forkhead Box G1 (Foxg1) regulates gliogenesis in the mouse neocortex via distinct cell-autonomous roles in progenitors and postmitotic neurons that regulate different aspects of the gliogenic FGF signalling pathway. We demonstrate that loss of Foxg1 in cortical progenitors at neurogenic stages causes premature astrogliogenesis. We identify a novel FOXG1 target, the pro-gliogenic FGF pathway component Fgfr3, which is suppressed by FOXG1 cell-autonomously to maintain neurogenesis. Furthermore, FOXG1 can also suppress premature astrogliogenesis triggered by the augmentation of FGF signalling. We identify a second novel function of FOXG1 in regulating the expression of gliogenic cues in newborn neocortical upper-layer neurons. Loss of FOXG1 in postmitotic neurons non-autonomously enhances gliogenesis in the progenitors via FGF signalling. These results fit well with the model that newborn neurons secrete cues that trigger progenitors to produce the next wave of cell types, astrocytes. If FGF signalling is attenuated in Foxg1 null progenitors, they progress to oligodendrocyte production. Therefore, loss of FOXG1 transitions the progenitor to a gliogenic state, producing either astrocytes or oligodendrocytes depending on FGF signalling levels. Our results uncover how FOXG1 integrates extrinsic signalling via the FGF pathway to regulate the sequential generation of neurons, astrocytes, and oligodendrocytes in the cerebral cortex.