Anterior insular cortex plays a critical role in interoceptive attention
Abstract
Accumulating evidence indicates that the anterior insular cortex (AIC) mediates interoceptive attention, which refers to attention towards physiological signals arising from the body. However, the necessity of the AIC in this process has not been demonstrated. Using a novel task that directs attention toward breathing rhythm, we assessed the involvement of the AIC in interoceptive attention in healthy participants using functional magnetic resonance imaging and examined the necessity of the AIC in interoceptive attention in patients with AIC lesions. Results showed that interoceptive attention was associated with increased AIC activation, as well as enhanced coupling between the AIC and somatosensory areas along with reduced coupling between the AIC and visual sensory areas. In addition, AIC activation was predictive of individual differences in interoceptive accuracy. Importantly, AIC lesion patients showed disrupted interoceptive discrimination accuracy and sensitivity. These results provide compelling evidence that AIC plays a critical role in interoceptive attention.
Data availability
Source data have been deposited in Dyrad, including behavioral data, fMRI data, and lesion patient data. Our Dyrad DOI is: doi:10.5061/dryad.5sj852c
-
Data from: Anterior insular cortex plays a critical role in interoceptive attentionDryad Digital Repository, doi 10.5061/dryad.5sj852c.
Article and author information
Author details
Funding
National Natural Science Foundation of China (81729001)
- Jin Fan
China Postdoctoral Science Foundation (2016M600835)
- Qiong Wu
National Institute on Drug Abuse (1R01DA043695)
- Xiaosi Gu
National Natural Science Foundation of China (81328008)
- Jin Fan
National Natural Science Foundation of China (61690205)
- Yanhong Wu
National Institute of Mental Health (R01MH094305)
- Jin Fan
Research grant of 973 (973-2015CB351800)
- Yanhong Wu
National Natural Science Foundation of China (31771205)
- Yanhong Wu
National Institute on Drug Abuse (Intramul Research Program)
- Yihong Yang
Brain research Project of Beijing (Z16110002616014)
- Pinan Liu
Beijing Municipal Administration of Hospital Youth programs (QML20170503)
- Xingchao Wang
National Natural Science Foundation of China (81600931)
- Xingchao Wang
Capital Health Development Research Project of Beijing (2016-4-1074)
- Xingchao Wang
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: All participants in fMRI study and in lesion study were gave written informed consent in accordance with the procedures and protocols approved by The Human Subjects Review Committee of Peking University and by The Institutional Review Board of the Beijing Tiantan Hospital, Capital Medical University, respectively.
Copyright
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
By influencing calcium homeostasis, local protein synthesis and the endoplasmic reticulum, a small protein called Rab10 emerges as a crucial cytoplasmic regulator of neuropeptide secretion.
-
- Neuroscience
The infralimbic cortex (IL) is essential for flexible behavioral responses to threatening environmental events. Reactive behaviors such as freezing or flight are adaptive in some contexts, but in others a strategic avoidance behavior may be more advantageous. IL has been implicated in avoidance, but the contribution of distinct IL neural subtypes with differing molecular identities and wiring patterns is poorly understood. Here, we study IL parvalbumin (PV) interneurons in mice as they engage in active avoidance behavior, a behavior in which mice must suppress freezing in order to move to safety. We find that activity in inhibitory PV neurons increases during movement to avoid the shock in this behavioral paradigm, and that PV activity during movement emerges after mice have experienced a single shock, prior to learning avoidance. PV neural activity does not change during movement toward cued rewards or during general locomotion in the open field, behavioral paradigms where freezing does not need to be suppressed to enable movement. Optogenetic suppression of PV neurons increases the duration of freezing and delays the onset of avoidance behavior, but does not affect movement toward rewards or general locomotion. These data provide evidence that IL PV neurons support strategic avoidance behavior by suppressing freezing.