1. Biochemistry and Chemical Biology
  2. Microbiology and Infectious Disease
Download icon

Optimization-by-design of hepatotropic lipid nanoparticles targeting the sodium-taurocholate cotransporting polypeptide

Research Article
  • Cited 5
  • Views 1,654
  • Annotations
Cite this article as: eLife 2019;8:e42276 doi: 10.7554/eLife.42276

Abstract

Active targeting and specific drug delivery to parenchymal liver cells is a promising strategy to treat various liver disorders. Here, we modified synthetic lipid-based nanoparticles with targeting peptides derived from the hepatitis B virus large envelope protein (HBVpreS) to specifically target the sodium-taurocholate cotransporting polypeptide (NTCP; SLC10A1) on the sinusoidal membrane of hepatocytes. Physicochemical properties of targeted nanoparticles were optimized and NTCP-specific, ligand-dependent binding and internalization was confirmed in vitro. The pharmacokinetics and targeting capacity of selected lead formulations was investigated in vivo using the emerging zebrafish screening model. Liposomal nanoparticles modified with 0.25 mol% of a short myristoylated HBV derived peptide, i.e. Myr‑HBVpreS2-31, showed an optimal balance between systemic circulation, avoidance of blood clearance, and targeting capacity. Pronounced liver enrichment, active NTCP‑mediated targeting of hepatocytes and efficient cellular internalization were confirmed in mice by 111In gamma scintigraphy and fluorescence microscopy demonstrating the potential use of our hepatotropic, ligand-modified nanoparticles.

Article and author information

Author details

  1. Dominik Witzigmann

    Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
    For correspondence
    dominik.witzigmann@unibas.ch
    Competing interests
    The authors declare that no competing interests exist.
  2. Philipp Uhl

    Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Sandro Sieber

    Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Christina Kaufman

    Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Tomaz Einfalt

    Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Katrin Schöneweis

    Department of Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Philip Grossen

    Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3416-5570
  8. Jonas Buck

    Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Yi Ni

    Department of Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Susanne H Schenk

    Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  11. Janine Hussner

    Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  12. Henriette E Meyer zu Schwabedissen

    Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0458-4579
  13. Gabriela Québatte

    Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  14. Walter Mier

    Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Stephan Urban

    Department of Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  16. Jörg Huwyler

    Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
    For correspondence
    joerg.huwyler@unibas.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1748-5676

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (174975)

  • Dominik Witzigmann

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (173057)

  • Jonas Buck
  • Jörg Huwyler

Deutsche Forschungsgemeinschaft (209091148)

  • Stephan Urban

Deutsches Zentrum für Infektionsforschung (5.704)

  • Stephan Urban

Deutsches Zentrum für Infektionsforschung (5.807)

  • Stephan Urban

Freiwillige Akademische Gesellschaft (FAG Basel)

  • Dominik Witzigmann
  • Sandro Sieber
  • Jörg Huwyler

Stiftung zur Förderung des pharmazeutischen Nachwuchses in Basel

  • Sandro Sieber

Novartis University Basel Excellence SCholarship for Life Sciences

  • Dominik Witzigmann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentation: Zebrafish embryo (Danio rerio) studies were performed in strict accordance with Swiss animal welfare regulations. Mouse and rat experiments were carried out in accordance with German legislation on animal welfare. All of the animals were handled according to approved institutional animal care and use protocol of the University of Basel and University of Heidelberg.

Reviewing Editor

  1. Bavesh D Kana, University of the Witwatersrand, South Africa

Publication history

  1. Received: September 24, 2018
  2. Accepted: July 17, 2019
  3. Accepted Manuscript published: July 23, 2019 (version 1)
  4. Version of Record published: August 5, 2019 (version 2)

Copyright

© 2019, Witzigmann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,654
    Page views
  • 241
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qi Yang et al.
    Research Article

    The Spike protein of SARS-CoV-2, its receptor binding domain (RBD), and its primary receptor ACE2 are extensively glycosylated. The impact of this post-translational modification on viral entry is yet unestablished. We expressed different glycoforms of the Spike-protein and ACE2 in CRISPR-Cas9 glycoengineered cells, and developed corresponding SARS-CoV-2 pseudovirus. We observed that N- and O-glycans had only minor contribution to Spike-ACE2 binding. However, these carbohydrates played a major role in regulating viral entry. Blocking N-glycan biosynthesis at the oligomannose stage using both genetic approaches and the small molecule kifunensine dramatically reduced viral entry into ACE2 expressing HEK293T cells. Blocking O-glycan elaboration also partially blocked viral entry. Mechanistic studies suggest multiple roles for glycans during viral entry. Among them, inhibition of N-glycan biosynthesis enhanced Spike-protein proteolysis. This could reduce RBD presentation on virus, lowering binding to host ACE2 and decreasing viral entry. Overall, chemical inhibitors of glycosylation may be evaluated for COVID-19.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    İbrahim Avşar Ilik et al.
    Research Article

    The nucleus of higher eukaryotes is a highly compartmentalized and dynamic organelle consisting of several biomolecular condensates that regulate gene expression at multiple levels (Banani et al., 2017; Shin and Brangwynne, 2017). First reported more than 100 years ago by Ramón y Cajal, nuclear speckles (NS) are among the most prominent of such condensates (Spector and Lamond, 2011). Despite their prevalence, research on the function of NS is virtually restricted to colocalization analyses, since an organizing core, without which NS cannot form, remains unidentified (Chen and Belmont, 2019; Galganski et al., 2017). The monoclonal antibody SC35, which was raised against a spliceosomal extract, is a frequently used reagent to mark NS since its debut in 1990 (Fu and Maniatis, 1990). Unexpectedly, we found that this antibody has been misidentified and the main target of SC35 mAb is SRRM2, a large (~300 kDa), spliceosome-associated (Jia and Sun, 2018) protein with prominent intrinsically disordered regions (IDRs) that sharply localizes to NS (Blencowe et al., 1994). Here we show that, the core of NS is likely formed by SON and SRRM2, since depletion of SON leads only to a partial disassembly of NS as reported previously (Ahn et al., 2011; Fei et al., 2017; Sharma et al., 2010), in contrast, combined depletion of SON together with SRRM2, but not other NS associated factors, or depletion of SON in a cell line where IDRs of SRRM2 are genetically deleted, leads to a near-complete dissolution of NS. This work, therefore, paves the way to study the role of NS under diverse physiological and stress conditions.