1. Chromosomes and Gene Expression
Download icon

Exploration of CTCF post-translation modifications uncovers Serine-224 phosphorylation by PLK1 at pericentric regions during the G2/M transition

  1. Brian C del Rosario
  2. Andrea J Kriz
  3. Amanda M del Rosario
  4. Anthony Anselmo
  5. Christopher J Frye
  6. Forest M White
  7. Ruslan I Sadreyev
  8. Jeannie T Lee  Is a corresponding author
  1. Massachusetts General Hospital, United States
  2. Koch Institute for Integrative Cancer Research at MIT, United States
  3. Cell Signaling Technologies, United States
Tools and Resources
  • Cited 1
  • Views 1,769
  • Annotations
Cite this article as: eLife 2019;8:e42341 doi: 10.7554/eLife.42341

Abstract

The zinc finger CCCTC-binding protein (CTCF) carries out many functions in the cell. Although previous studies sought to explain CTCF multivalency based on sequence composition of binding sites, few examined how CTCF post-translational modification (PTM) could contribute to function. Here, we performed CTCF mass spectrometry, identified a novel phosphorylation site at Serine 224 (Ser224-P), and demonstrate that phosphorylation is carried out by Polo kinase 1 (PLK1). CTCF Ser224-P is chromatin-associated, mapping to at least a subset of known CTCF sites. CTCF Ser224-P accumulates during the G2/M transition of the cell cycle and is enriched at pericentric regions. The phospho-obviation mutant, S224A, appeared normal. However, the phospho-mimic mutant, S224E, is detrimental to mouse embryonic stem cell colonies. While ploidy and chromatin architecture appear unaffected, S224E mutants differentially express of hundreds of genes, including p53 and p21. We have thus identified a new CTCF PTM and provided evidence of biological function.

Article and author information

Author details

  1. Brian C del Rosario

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  2. Andrea J Kriz

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  3. Amanda M del Rosario

    Koch Institute for Integrative Cancer Research at MIT, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Anthony Anselmo

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  5. Christopher J Frye

    Cell Signaling Technologies, Danvers, United States
    Competing interests
    No competing interests declared.
  6. Forest M White

    Koch Institute for Integrative Cancer Research at MIT, Cambridge, United States
    Competing interests
    No competing interests declared.
  7. Ruslan I Sadreyev

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  8. Jeannie T Lee

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    For correspondence
    lee@molbio.mgh.harvard.edu
    Competing interests
    Jeannie T Lee, Reviewing editor, eLifecofounder and member of the Scientific Advisory Boards of Translate Bio and Fulcrum Therapeutics.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7786-8850

Funding

Howard Hughes Medical Institute

  • Jeannie T Lee

National Institutes of Health (R37-GM58839)

  • Jeannie T Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jessica K Tyler, Weill Cornell Medicine, United States

Publication history

  1. Received: September 25, 2018
  2. Accepted: January 23, 2019
  3. Accepted Manuscript published: January 24, 2019 (version 1)
  4. Accepted Manuscript updated: January 28, 2019 (version 2)
  5. Version of Record published: February 4, 2019 (version 3)
  6. Version of Record updated: February 5, 2019 (version 4)

Copyright

© 2019, del Rosario et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,769
    Page views
  • 292
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Jay F Sarthy et al.
    Research Article Updated

    Lysine 27-to-methionine (K27M) mutations in the H3.1 or H3.3 histone genes are characteristic of pediatric diffuse midline gliomas (DMGs). These oncohistone mutations dominantly inhibit histone H3K27 trimethylation and silencing, but it is unknown how oncohistone type affects gliomagenesis. We show that the genomic distributions of H3.1 and H3.3 oncohistones in human patient-derived DMG cells are consistent with the DNAreplication-coupled deposition of histone H3.1 and the predominant replication-independent deposition of histone H3.3. Although H3K27 trimethylation is reduced for both oncohistone types, H3.3K27M-bearing cells retain some domains, and only H3.1K27M-bearing cells lack H3K27 trimethylation. Neither oncohistone interferes with PRC2 binding. Using Drosophila as a model, we demonstrate that inhibition of H3K27 trimethylation occurs only when H3K27M oncohistones are deposited into chromatin and only when expressed in cycling cells. We propose that oncohistones inhibit the H3K27 methyltransferase as chromatin patterns are being duplicated in proliferating cells, predisposing them to tumorigenesis.

    1. Chromosomes and Gene Expression
    2. Plant Biology
    Jo Hepworth et al.
    Research Article Updated

    In Arabidopsis thaliana, winter is registered during vernalization through the temperature-dependent repression and epigenetic silencing of floral repressor FLOWERING LOCUS C (FLC). Natural Arabidopsis accessions show considerable variation in vernalization. However, which aspect of the FLC repression mechanism is most important for adaptation to different environments is unclear. By analysing FLC dynamics in natural variants and mutants throughout winter in three field sites, we find that autumnal FLC expression, rather than epigenetic silencing, is the major variable conferred by the distinct Arabidopsis FLChaplotypes. This variation influences flowering responses of Arabidopsis accessions resulting in an interplay between promotion and delay of flowering in different climates to balance survival and, through a post-vernalization effect, reproductive output. These data reveal how expression variation through non-coding cis variation at FLC has enabled Arabidopsis accessions to adapt to different climatic conditions and year-on-year fluctuations.