Exploration of CTCF post-translation modifications uncovers Serine-224 phosphorylation by PLK1 at pericentric regions during the G2/M transition

  1. Brian C del Rosario
  2. Andrea J Kriz
  3. Amanda M del Rosario
  4. Anthony Anselmo
  5. Christopher J Fry
  6. Forest M White
  7. Ruslan I Sadreyev
  8. Jeannie T Lee  Is a corresponding author
  1. Massachusetts General Hospital, United States
  2. Koch Institute for Integrative Cancer Research at MIT, United States
  3. Cell Signaling Technologies, United States

Abstract

The zinc finger CCCTC-binding protein (CTCF) carries out many functions in the cell. Although previous studies sought to explain CTCF multivalency based on sequence composition of binding sites, few examined how CTCF post-translational modification (PTM) could contribute to function. Here, we performed CTCF mass spectrometry, identified a novel phosphorylation site at Serine 224 (Ser224-P), and demonstrate that phosphorylation is carried out by Polo kinase 1 (PLK1). CTCF Ser224-P is chromatin-associated, mapping to at least a subset of known CTCF sites. CTCF Ser224-P accumulates during the G2/M transition of the cell cycle and is enriched at pericentric regions. The phospho-obviation mutant, S224A, appeared normal. However, the phospho-mimic mutant, S224E, is detrimental to mouse embryonic stem cell colonies. While ploidy and chromatin architecture appear unaffected, S224E mutants differentially express of hundreds of genes, including p53 and p21. We have thus identified a new CTCF PTM and provided evidence of biological function.

Data availability

High-throughput sequencing data are available in the National Center for Biotechnology Information GEO repository under accession GSE119697

The following data sets were generated

Article and author information

Author details

  1. Brian C del Rosario

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  2. Andrea J Kriz

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  3. Amanda M del Rosario

    Koch Institute for Integrative Cancer Research at MIT, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Anthony Anselmo

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  5. Christopher J Fry

    Cell Signaling Technologies, Danvers, United States
    Competing interests
    No competing interests declared.
  6. Forest M White

    Koch Institute for Integrative Cancer Research at MIT, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1545-1651
  7. Ruslan I Sadreyev

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  8. Jeannie T Lee

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    For correspondence
    lee@molbio.mgh.harvard.edu
    Competing interests
    Jeannie T Lee, Reviewing editor, eLifecofounder and member of the Scientific Advisory Boards of Translate Bio and Fulcrum Therapeutics.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7786-8850

Funding

Howard Hughes Medical Institute

  • Jeannie T Lee

National Institutes of Health (R37-GM58839)

  • Jeannie T Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, del Rosario et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,625
    views
  • 369
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brian C del Rosario
  2. Andrea J Kriz
  3. Amanda M del Rosario
  4. Anthony Anselmo
  5. Christopher J Fry
  6. Forest M White
  7. Ruslan I Sadreyev
  8. Jeannie T Lee
(2019)
Exploration of CTCF post-translation modifications uncovers Serine-224 phosphorylation by PLK1 at pericentric regions during the G2/M transition
eLife 8:e42341.
https://doi.org/10.7554/eLife.42341

Share this article

https://doi.org/10.7554/eLife.42341

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Hasiba Asma, Ellen Tieke ... Marc S Halfon
    Tools and Resources

    Annotation of newly sequenced genomes frequently includes genes, but rarely covers important non-coding genomic features such as the cis-regulatory modules—e.g., enhancers and silencers—that regulate gene expression. Here, we begin to remedy this situation by developing a workflow for rapid initial annotation of insect regulatory sequences, and provide a searchable database resource with enhancer predictions for 33 genomes. Using our previously developed SCRMshaw computational enhancer prediction method, we predict over 2.8 million regulatory sequences along with the tissues where they are expected to be active, in a set of insect species ranging over 360 million years of evolution. Extensive analysis and validation of the data provides several lines of evidence suggesting that we achieve a high true-positive rate for enhancer prediction. One, we show that our predictions target specific loci, rather than random genomic locations. Two, we predict enhancers in orthologous loci across a diverged set of species to a significantly higher degree than random expectation would allow. Three, we demonstrate that our predictions are highly enriched for regions of accessible chromatin. Four, we achieve a validation rate in excess of 70% using in vivo reporter gene assays. As we continue to annotate both new tissues and new species, our regulatory annotation resource will provide a rich source of data for the research community and will have utility for both small-scale (single gene, single species) and large-scale (many genes, many species) studies of gene regulation. In particular, the ability to search for functionally related regulatory elements in orthologous loci should greatly facilitate studies of enhancer evolution even among distantly related species.

    1. Chromosomes and Gene Expression
    Chileleko Siachisumo, Sara Luzzi ... David J Elliott
    Research Advance

    Previously, we showed that the germ cell-specific nuclear protein RBMXL2 represses cryptic splicing patterns during meiosis and is required for male fertility (Ehrmann et al., 2019). Here, we show that in somatic cells the similar yet ubiquitously expressed RBMX protein has similar functions. RBMX regulates a distinct class of exons that exceed the median human exon size. RBMX protein-RNA interactions are enriched within ultra-long exons, particularly within genes involved in genome stability, and repress the selection of cryptic splice sites that would compromise gene function. The RBMX gene is silenced during male meiosis due to sex chromosome inactivation. To test whether RBMXL2 might replace the function of RBMX during meiosis we induced expression of RBMXL2 and the more distantly related RBMY protein in somatic cells, finding each could rescue aberrant patterns of RNA processing caused by RBMX depletion. The C-terminal disordered domain of RBMXL2 is sufficient to rescue proper splicing control after RBMX depletion. Our data indicate that RBMX and RBMXL2 have parallel roles in somatic tissues and the germline that must have been conserved for at least 200 million years of mammalian evolution. We propose RBMX family proteins are particularly important for the splicing inclusion of some ultra-long exons with increased intrinsic susceptibility to cryptic splice site selection.