Spike-timing-dependent ensemble encoding by non-classically responsive cortical neurons

  1. Michele N Insanally
  2. Ioana Carcea
  3. Rachel E Field
  4. Chris C Rodgers
  5. Brian DePasquale
  6. Kanaka Rajan
  7. Michael R DeWeese
  8. Badr F Albanna
  9. Robert C Froemke  Is a corresponding author
  1. New York University School of Medicine, United States
  2. Columbia University, United States
  3. Princeton University, United States
  4. Icahn School of Medicine at Mount Sinai, United States
  5. University of California, Berkeley, United States
  6. Fordham University, United States

Abstract

Neurons recorded in behaving animals often do not discernibly respond to sensory input and are not overtly task-modulated. These non-classically responsive neurons are difficult to interpret and are typically neglected from analysis, confounding attempts to connect neural activity to perception and behavior. Here we describe a trial-by-trial, spike-timing-based algorithm to reveal the coding capacities of these neurons in auditory and frontal cortex of behaving rats. Classically responsive and non-classically responsive cells contained significant information about sensory stimuli and behavioral decisions. Stimulus category was more accurately represented in frontal cortex than auditory cortex, via ensembles of non-classically responsive cells coordinating the behavioral meaning of spike timings on correct but not error trials. This unbiased approach allows the contribution of all recorded neurons – particularly those without obvious task-related, trial-averaged firing rate modulation – to be assessed for behavioral relevance on single trials.

Data availability

The code and data underlying our analyses are freely available online (https://github.com/badralbanna/Insanally2017)

The following data sets were generated

Article and author information

Author details

  1. Michele N Insanally

    Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ioana Carcea

    Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rachel E Field

    Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Chris C Rodgers

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Brian DePasquale

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3830-3184
  6. Kanaka Rajan

    Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael R DeWeese

    Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Badr F Albanna

    Department of Natural Sciences, Fordham University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5536-6443
  9. Robert C Froemke

    Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, United States
    For correspondence
    robert.froemke@med.nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1230-6811

Funding

National Institute on Deafness and Other Communication Disorders (DC015543)

  • Michele N Insanally

Howard Hughes Medical Institute (Faculty Scholarship)

  • Robert C Froemke

NARSAD

  • Michele N Insanally
  • Ioana Carcea

James McDonnell

  • Kanaka Rajan

Sloan Research Fellowship

  • Robert C Froemke

National Institute on Deafness and Other Communication Disorders (DC009635)

  • Robert C Froemke

National Institute on Deafness and Other Communication Disorders (DC012557)

  • Robert C Froemke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were performed in accordance with National Institutes of Health standards and were conducted under a protocol (#160611-03) approved by the New York University School of Medicine Institutional Animal Care and Use Committee.

Copyright

© 2019, Insanally et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,896
    views
  • 986
    downloads
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michele N Insanally
  2. Ioana Carcea
  3. Rachel E Field
  4. Chris C Rodgers
  5. Brian DePasquale
  6. Kanaka Rajan
  7. Michael R DeWeese
  8. Badr F Albanna
  9. Robert C Froemke
(2019)
Spike-timing-dependent ensemble encoding by non-classically responsive cortical neurons
eLife 8:e42409.
https://doi.org/10.7554/eLife.42409

Share this article

https://doi.org/10.7554/eLife.42409

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Gaetan De Waele, Gerben Menschaert, Willem Waegeman
    Research Article

    Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Sanjarbek Hudaiberdiev, Ivan Ovcharenko
    Research Article

    Enhancers and promoters are classically considered to be bound by a small set of transcription factors (TFs) in a sequence-specific manner. This assumption has come under increasing skepticism as the datasets of ChIP-seq assays of TFs have expanded. In particular, high-occupancy target (HOT) loci attract hundreds of TFs with often no detectable correlation between ChIP-seq peaks and DNA-binding motif presence. Here, we used a set of 1003 TF ChIP-seq datasets (HepG2, K562, H1) to analyze the patterns of ChIP-seq peak co-occurrence in combination with functional genomics datasets. We identified 43,891 HOT loci forming at the promoter (53%) and enhancer (47%) regions. HOT promoters regulate housekeeping genes, whereas HOT enhancers are involved in tissue-specific process regulation. HOT loci form the foundation of human super-enhancers and evolve under strong negative selection, with some of these loci being located in ultraconserved regions. Sequence-based classification analysis of HOT loci suggested that their formation is driven by the sequence features, and the density of mapped ChIP-seq peaks across TF-bound loci correlates with sequence features and the expression level of flanking genes. Based on the affinities to bind to promoters and enhancers we detected five distinct clusters of TFs that form the core of the HOT loci. We report an abundance of HOT loci in the human genome and a commitment of 51% of all TF ChIP-seq binding events to HOT locus formation thus challenging the classical model of enhancer activity and propose a model of HOT locus formation based on the existence of large transcriptional condensates.