Spike-timing-dependent ensemble encoding by non-classically responsive cortical neurons

  1. Michele N Insanally
  2. Ioana Carcea
  3. Rachel E Field
  4. Chris C Rodgers
  5. Brian DePasquale
  6. Kanaka Rajan
  7. Michael R DeWeese
  8. Badr F Albanna
  9. Robert C Froemke  Is a corresponding author
  1. New York University School of Medicine, United States
  2. Columbia University, United States
  3. Princeton University, United States
  4. Icahn School of Medicine at Mount Sinai, United States
  5. University of California, Berkeley, United States
  6. Fordham University, United States

Abstract

Neurons recorded in behaving animals often do not discernibly respond to sensory input and are not overtly task-modulated. These non-classically responsive neurons are difficult to interpret and are typically neglected from analysis, confounding attempts to connect neural activity to perception and behavior. Here we describe a trial-by-trial, spike-timing-based algorithm to reveal the coding capacities of these neurons in auditory and frontal cortex of behaving rats. Classically responsive and non-classically responsive cells contained significant information about sensory stimuli and behavioral decisions. Stimulus category was more accurately represented in frontal cortex than auditory cortex, via ensembles of non-classically responsive cells coordinating the behavioral meaning of spike timings on correct but not error trials. This unbiased approach allows the contribution of all recorded neurons – particularly those without obvious task-related, trial-averaged firing rate modulation – to be assessed for behavioral relevance on single trials.

Data availability

The code and data underlying our analyses are freely available online (https://github.com/badralbanna/Insanally2017)

The following data sets were generated

Article and author information

Author details

  1. Michele N Insanally

    Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ioana Carcea

    Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rachel E Field

    Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Chris C Rodgers

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Brian DePasquale

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3830-3184
  6. Kanaka Rajan

    Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael R DeWeese

    Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Badr F Albanna

    Department of Natural Sciences, Fordham University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5536-6443
  9. Robert C Froemke

    Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, United States
    For correspondence
    robert.froemke@med.nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1230-6811

Funding

National Institute on Deafness and Other Communication Disorders (DC015543)

  • Michele N Insanally

Howard Hughes Medical Institute (Faculty Scholarship)

  • Robert C Froemke

NARSAD

  • Michele N Insanally
  • Ioana Carcea

James McDonnell

  • Kanaka Rajan

Sloan Research Fellowship

  • Robert C Froemke

National Institute on Deafness and Other Communication Disorders (DC009635)

  • Robert C Froemke

National Institute on Deafness and Other Communication Disorders (DC012557)

  • Robert C Froemke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stephanie Palmer, University of Chicago, United States

Ethics

Animal experimentation: All animal procedures were performed in accordance with National Institutes of Health standards and were conducted under a protocol (#160611-03) approved by the New York University School of Medicine Institutional Animal Care and Use Committee.

Version history

  1. Received: September 27, 2018
  2. Accepted: January 27, 2019
  3. Accepted Manuscript published: January 28, 2019 (version 1)
  4. Version of Record published: February 26, 2019 (version 2)

Copyright

© 2019, Insanally et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,609
    Page views
  • 960
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michele N Insanally
  2. Ioana Carcea
  3. Rachel E Field
  4. Chris C Rodgers
  5. Brian DePasquale
  6. Kanaka Rajan
  7. Michael R DeWeese
  8. Badr F Albanna
  9. Robert C Froemke
(2019)
Spike-timing-dependent ensemble encoding by non-classically responsive cortical neurons
eLife 8:e42409.
https://doi.org/10.7554/eLife.42409

Share this article

https://doi.org/10.7554/eLife.42409

Further reading

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Alain Pulfer, Diego Ulisse Pizzagalli ... Santiago Fernandez Gonzalez
    Tools and Resources

    Intravital microscopy has revolutionized live-cell imaging by allowing the study of spatial–temporal cell dynamics in living animals. However, the complexity of the data generated by this technology has limited the development of effective computational tools to identify and quantify cell processes. Amongst them, apoptosis is a crucial form of regulated cell death involved in tissue homeostasis and host defense. Live-cell imaging enabled the study of apoptosis at the cellular level, enhancing our understanding of its spatial–temporal regulation. However, at present, no computational method can deliver robust detection of apoptosis in microscopy timelapses. To overcome this limitation, we developed ADeS, a deep learning-based apoptosis detection system that employs the principle of activity recognition. We trained ADeS on extensive datasets containing more than 10,000 apoptotic instances collected both in vitro and in vivo, achieving a classification accuracy above 98% and outperforming state-of-the-art solutions. ADeS is the first method capable of detecting the location and duration of multiple apoptotic events in full microscopy timelapses, surpassing human performance in the same task. We demonstrated the effectiveness and robustness of ADeS across various imaging modalities, cell types, and staining techniques. Finally, we employed ADeS to quantify cell survival in vitro and tissue damage in mice, demonstrating its potential application in toxicity assays, treatment evaluation, and inflammatory dynamics. Our findings suggest that ADeS is a valuable tool for the accurate detection and quantification of apoptosis in live-cell imaging and, in particular, intravital microscopy data, providing insights into the complex spatial–temporal regulation of this process.

    1. Computational and Systems Biology
    James D Brunner, Nicholas Chia
    Research Article Updated

    The microbial community composition in the human gut has a profound effect on human health. This observation has lead to extensive use of microbiome therapies, including over-the-counter ‘probiotic’ treatments intended to alter the composition of the microbiome. Despite so much promise and commercial interest, the factors that contribute to the success or failure of microbiome-targeted treatments remain unclear. We investigate the biotic interactions that lead to successful engraftment of a novel bacterial strain introduced to the microbiome as in probiotic treatments. We use pairwise genome-scale metabolic modeling with a generalized resource allocation constraint to build a network of interactions between taxa that appear in an experimental engraftment study. We create induced sub-graphs using the taxa present in individual samples and assess the likelihood of invader engraftment based on network structure. To do so, we use a generalized Lotka-Volterra model, which we show has strong ability to predict if a particular invader or probiotic will successfully engraft into an individual’s microbiome. Furthermore, we show that the mechanistic nature of the model is useful for revealing which microbe-microbe interactions potentially drive engraftment.