Spike-timing-dependent ensemble encoding by non-classically responsive cortical neurons

  1. Michele N Insanally
  2. Ioana Carcea
  3. Rachel E Field
  4. Chris C Rodgers
  5. Brian DePasquale
  6. Kanaka Rajan
  7. Michael R DeWeese
  8. Badr F Albanna
  9. Robert C Froemke  Is a corresponding author
  1. New York University School of Medicine, United States
  2. Columbia University, United States
  3. Princeton University, United States
  4. Icahn School of Medicine at Mount Sinai, United States
  5. University of California, Berkeley, United States
  6. Fordham University, United States

Abstract

Neurons recorded in behaving animals often do not discernibly respond to sensory input and are not overtly task-modulated. These non-classically responsive neurons are difficult to interpret and are typically neglected from analysis, confounding attempts to connect neural activity to perception and behavior. Here we describe a trial-by-trial, spike-timing-based algorithm to reveal the coding capacities of these neurons in auditory and frontal cortex of behaving rats. Classically responsive and non-classically responsive cells contained significant information about sensory stimuli and behavioral decisions. Stimulus category was more accurately represented in frontal cortex than auditory cortex, via ensembles of non-classically responsive cells coordinating the behavioral meaning of spike timings on correct but not error trials. This unbiased approach allows the contribution of all recorded neurons – particularly those without obvious task-related, trial-averaged firing rate modulation – to be assessed for behavioral relevance on single trials.

Data availability

The code and data underlying our analyses are freely available online (https://github.com/badralbanna/Insanally2017)

The following data sets were generated

Article and author information

Author details

  1. Michele N Insanally

    Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ioana Carcea

    Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rachel E Field

    Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Chris C Rodgers

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Brian DePasquale

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3830-3184
  6. Kanaka Rajan

    Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael R DeWeese

    Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Badr F Albanna

    Department of Natural Sciences, Fordham University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5536-6443
  9. Robert C Froemke

    Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, United States
    For correspondence
    robert.froemke@med.nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1230-6811

Funding

National Institute on Deafness and Other Communication Disorders (DC015543)

  • Michele N Insanally

Howard Hughes Medical Institute (Faculty Scholarship)

  • Robert C Froemke

NARSAD

  • Michele N Insanally
  • Ioana Carcea

James McDonnell

  • Kanaka Rajan

Sloan Research Fellowship

  • Robert C Froemke

National Institute on Deafness and Other Communication Disorders (DC009635)

  • Robert C Froemke

National Institute on Deafness and Other Communication Disorders (DC012557)

  • Robert C Froemke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were performed in accordance with National Institutes of Health standards and were conducted under a protocol (#160611-03) approved by the New York University School of Medicine Institutional Animal Care and Use Committee.

Copyright

© 2019, Insanally et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,075
    views
  • 1,007
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michele N Insanally
  2. Ioana Carcea
  3. Rachel E Field
  4. Chris C Rodgers
  5. Brian DePasquale
  6. Kanaka Rajan
  7. Michael R DeWeese
  8. Badr F Albanna
  9. Robert C Froemke
(2019)
Spike-timing-dependent ensemble encoding by non-classically responsive cortical neurons
eLife 8:e42409.
https://doi.org/10.7554/eLife.42409

Share this article

https://doi.org/10.7554/eLife.42409

Further reading

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Ruihan Dong, Rongrong Liu ... Cheng Zhu
    Research Article

    Antimicrobial peptides (AMPs) are attractive candidates to combat antibiotic resistance for their capability to target biomembranes and restrict a wide range of pathogens. It is a daunting challenge to discover novel AMPs due to their sparse distributions in a vast peptide universe, especially for peptides that demonstrate potencies for both bacterial membranes and viral envelopes. Here, we establish a de novo AMP design framework by bridging a deep generative module and a graph-encoding activity regressor. The generative module learns hidden ‘grammars’ of AMP features and produces candidates sequentially pass antimicrobial predictor and antiviral classifiers. We discovered 16 bifunctional AMPs and experimentally validated their abilities to inhibit a spectrum of pathogens in vitro and in animal models. Notably, P076 is a highly potent bactericide with the minimal inhibitory concentration of 0.21 μM against multidrug-resistant Acinetobacter baumannii, while P002 broadly inhibits five enveloped viruses. Our study provides feasible means to uncover the sequences that simultaneously encode antimicrobial and antiviral activities, thus bolstering the function spectra of AMPs to combat a wide range of drug-resistant infections.