Respiratory Syncytial Virus co-opts host mitochondrial function to favour infectious virus production

  1. MengJie MengJie Hu
  2. Keith E Schulze
  3. Reena Ghildyal
  4. Darren C Henstridge
  5. Jacek L Kolanowski
  6. Elizabeth J New
  7. Yuning Hong
  8. Alan C Hsu
  9. Philip M Hansbro
  10. Peter AB Wark
  11. Marie A Bogoyevitch
  12. David Andrew Jans  Is a corresponding author
  1. University of Melbourne, Australia
  2. Monash University, Australia
  3. University of Canberra, Australia
  4. Baker Heart and Diabetes Institute, Australia
  5. University of Sydney, Australia
  6. La Trobe University, Australia
  7. University of Newcastle, Australia

Abstract

Although respiratory syncytial virus (RSV) is responsible for more human deaths each year than influenza, its pathogenic mechanisms are poorly understood. Here high-resolution quantitative imaging, bioenergetics measurements and mitochondrial membrane potential- and redox-sensitive dyes are used to define RSV's impact on host mitochondria for the first time, delineating RSV-induced microtubule/dynein-dependent mitochondrial perinuclear clustering, and translocation towards the microtubule-organizing centre. These changes are concomitant with impaired mitochondrial respiration, loss of mitochondrial membrane potential and increased production of mitochondrial reactive oxygen species (ROS). Strikingly, agents that target microtubule integrity the dynein motor protein, or inhibit mitochondrial ROS production strongly suppresses RSV virus production, including in a mouse model with concomitantly reduced virus-induced lung inflammation. The results establish RSV's unique ability to co-opt host cell mitochondria to facilitate viral infection, revealing the RSV-mitochondrial interface for the first time as a viable target for therapeutic intervention.

Data availability

Data are being uploaded to Dryad (DOI: https://doi.org/10.5061/dryad.2n3162c). Customised scripts for quantitative analyses of mitochondrial distribution and results are publicly available throughhttps://gitlab.erc.monash.edu.au/mmi/mito

The following data sets were generated

Article and author information

Author details

  1. MengJie MengJie Hu

    Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7362-1452
  2. Keith E Schulze

    Monash Micro Imaging, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Reena Ghildyal

    Centre for Research in Therapeutic Solutions, University of Canberra, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Darren C Henstridge

    Cellular and Molecular Metabolism Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Jacek L Kolanowski

    School of Chemistry, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Elizabeth J New

    School of Chemistry, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Yuning Hong

    Department of Chemistry and Physics, La Trobe University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Alan C Hsu

    Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6640-0846
  9. Philip M Hansbro

    Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Peter AB Wark

    Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Marie A Bogoyevitch

    Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9745-3716
  12. David Andrew Jans

    Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
    For correspondence
    David.Jans@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5115-4745

Funding

National Health and Medical Research Council (APP1002486)

  • David Andrew Jans

National Health and Medical Research Council (APP1043511)

  • David Andrew Jans

National Health and Medical Research Council (APP1103050)

  • David Andrew Jans

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with The ACT Animal Welfare Act (1992) and the Australian Code of Practice for the Care and use of Animals for Scientific Purposes. The study protocol was approved by the Committee for Ethics in Animal Experimentation of the University of Canberra (project reference number CEAE 14-15).

Human subjects: Primary human bronchial epithelial cells (pBECs) were obtained from 4 healthy individuals who had no history of smoking or lung disease, had normal lung function, and gave written, informed consent to participate and have their data published, in accordance with the procedures in accordance with the procedures approved by the University of Newcastle Human Ethics Committee (project reference no. H-163-1205), in keeping with the guidelines of the National Institutes of Health, American Academy of Allergy and Immunology.

Copyright

© 2019, Hu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,821
    views
  • 553
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. MengJie MengJie Hu
  2. Keith E Schulze
  3. Reena Ghildyal
  4. Darren C Henstridge
  5. Jacek L Kolanowski
  6. Elizabeth J New
  7. Yuning Hong
  8. Alan C Hsu
  9. Philip M Hansbro
  10. Peter AB Wark
  11. Marie A Bogoyevitch
  12. David Andrew Jans
(2019)
Respiratory Syncytial Virus co-opts host mitochondrial function to favour infectious virus production
eLife 8:e42448.
https://doi.org/10.7554/eLife.42448

Share this article

https://doi.org/10.7554/eLife.42448

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.

    1. Microbiology and Infectious Disease
    Yue Sun, Jingwei Li ... Xin Deng
    Research Article

    The model Gram-negative plant pathogen Pseudomonas syringae utilises hundreds of transcription factors (TFs) to regulate its functional processes, including virulence and metabolic pathways that control its ability to infect host plants. Although the molecular mechanisms of regulators have been studied for decades, a comprehensive understanding of genome-wide TFs in Psph 1448A remains limited. Here, we investigated the binding characteristics of 170 of 301 annotated TFs through chromatin immunoprecipitation sequencing (ChIP-seq). Fifty-four TFs, 62 TFs, and 147 TFs were identified in top-level, middle-level, and bottom-level, reflecting multiple higher-order network structures and direction of information flow. More than 40,000 TF pairs were classified into 13 three-node submodules which revealed the regulatory diversity of TFs in Psph 1448A regulatory network. We found that bottom-level TFs performed high co-associated scores to their target genes. Functional categories of TFs at three levels encompassed various regulatory pathways. Three and 25 master TFs were identified to involve in virulence and metabolic regulation, respectively. Evolutionary analysis and topological modularity network revealed functional variability and various conservation of TFs in P. syringae (Psph 1448A, Pst DC3000, Pss B728a, and Psa C48). Overall, our findings demonstrated a global transcriptional regulatory network of genome-wide TFs in Psph 1448A. This knowledge can advance the development of effective treatment and prevention strategies for related infectious diseases.