A conserved morphogenetic mechanism for epidermal ensheathment of nociceptive sensory neurites

  1. Nan Jiang
  2. Jeffrey P Rasmussen
  3. Joshua A Clanton
  4. Marci F Rosenberg
  5. Kory P Luedke
  6. Mark R Cronan
  7. Edward D Parker
  8. Hyeon-Jin Kim
  9. Joshua C Vaughan
  10. Alvaro Sagasti
  11. Jay Z Parrish  Is a corresponding author
  1. University of Washington, United States
  2. University of California, Los Angeles, United States
  3. Duke University, United States

Abstract

Interactions between epithelial cells and neurons influence a range of sensory modalities including taste, touch, and smell. Vertebrate and invertebrate epidermal cells ensheath peripheral arbors of somatosensory neurons, including nociceptors, yet the developmental origins and functional roles of this ensheathment are largely unknown. Here, we describe an evolutionarily conserved morphogenetic mechanism for epidermal ensheathment of somatosensory neurites. We found that somatosensory neurons in Drosophila and zebrafish induce formation of epidermal sheaths, which wrap neurites of different types of neurons to different extents. Neurites induce formation of plasma membrane phosphatidylinositol 4,5-bisphosphate microdomains at nascent sheaths, followed by a filamentous actin network, and recruitment of junctional proteins that likely form autotypic junctions to seal sheaths. Finally, blocking epidermal sheath formation destabilized dendrite branches and reduced nociceptive sensitivity in Drosophila. Epidermal somatosensory neurite ensheathment is thus a deeply conserved cellular process that contributes to the morphogenesis and function of nociceptive sensory neurons.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Nan Jiang

    Department of Biology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jeffrey P Rasmussen

    Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6997-3773
  3. Joshua A Clanton

    Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Marci F Rosenberg

    Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kory P Luedke

    Department of Biology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mark R Cronan

    Department of Molecular Genetics and Microbiology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Edward D Parker

    Department of Opthalmology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Hyeon-Jin Kim

    Department of Chemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Joshua C Vaughan

    Department of Chemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6550-8935
  10. Alvaro Sagasti

    Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jay Z Parrish

    Department of Biology, University of Washington, Seattle, United States
    For correspondence
    jzp2@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0656-9148

Funding

National Institute of Mental Health (NIMH R01 MH115767)

  • Joshua C Vaughan

National Institute of Neurological Disorders and Stroke (NINDS R01 NS076614)

  • Jay Z Parrish

National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS R01 AR064582)

  • Alvaro Sagasti

Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD K99 HD086271)

  • Jeffrey P Rasmussen

Jane Coffin Childs Memorial Fund for Medical Research

  • Jeffrey P Rasmussen

University of Washington (WRF-Hall fellowship)

  • Kory P Luedke

Japan Society for the Promotion of Science (Long term fellowship)

  • Jay Z Parrish

National Eye Institute (NEI P30EY001730)

  • Edward D Parker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kang Shen, Howard Hughes Medical Institute, Stanford University, United States

Ethics

Animal experimentation: All zebrafish procedures were approved by the Chancellor's Animal Research Care Committee at UCLA (protocol #2005-117-41C)

Version history

  1. Received: September 30, 2018
  2. Accepted: March 8, 2019
  3. Accepted Manuscript published: March 11, 2019 (version 1)
  4. Version of Record published: April 5, 2019 (version 2)

Copyright

© 2019, Jiang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,494
    views
  • 522
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nan Jiang
  2. Jeffrey P Rasmussen
  3. Joshua A Clanton
  4. Marci F Rosenberg
  5. Kory P Luedke
  6. Mark R Cronan
  7. Edward D Parker
  8. Hyeon-Jin Kim
  9. Joshua C Vaughan
  10. Alvaro Sagasti
  11. Jay Z Parrish
(2019)
A conserved morphogenetic mechanism for epidermal ensheathment of nociceptive sensory neurites
eLife 8:e42455.
https://doi.org/10.7554/eLife.42455

Share this article

https://doi.org/10.7554/eLife.42455

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.