1. Computational and Systems Biology
  2. Microbiology and Infectious Disease
Download icon

Quantitative insights into the cyanobacterial cell economy

  1. Tomáš Zavřel  Is a corresponding author
  2. Marjan Faizi
  3. Cristina Loureiro
  4. Gereon Poschmann
  5. Kai Stühler
  6. Maria Sinetova
  7. Anna Zorina
  8. Ralf Steuer  Is a corresponding author
  9. Jan Červený
  1. Global Change Research Institute CAS, Czech Republic
  2. Humboldt-Universität zu Berlin, Germany
  3. Polytechnic University of Valencia, Spain
  4. Heinrich-Heine-Universität Düsseldorf, Germany
  5. Russian Academy of Sciences, Russian Federation
Tools and Resources
  • Cited 23
  • Views 2,274
  • Annotations
Cite this article as: eLife 2019;8:e42508 doi: 10.7554/eLife.42508

Abstract

Phototrophic microorganisms are promising resources for green biotechnology. Compared to heterotrophic microorganisms, however, the cellular economy of phototrophic growth is still insufficiently understood. We provide a quantitative analysis of light-limited, light-saturated, and light-inhibited growth of the cyanobacterium Synechocystis sp. PCC 6803 using a reproducible cultivation setup. We report key physiological parameters, including growth rate, cell size, and photosynthetic activity over a wide range of light intensities. Intracellular proteins were quantified to monitor proteome allocation as a function of growth rate. Among other physiological adaptations, we identify an upregulation of the translational machinery and downregulation of light harvesting components with increasing light intensity and growth rate. The resulting growth laws are discussed in the context of a coarse-grained model of phototrophic growth and available data obtained by a comprehensive literature search. Our insights into quantitative aspects of cyanobacterial adaptations to different growth rates have implications to understand and optimize photosynthetic productivity.

Data availability

Proteomics data have been deposited to the ProteomeXchange Consortium under accession code PXD009626.

The following data sets were generated

Article and author information

Author details

  1. Tomáš Zavřel

    Laboratory of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno, Czech Republic
    For correspondence
    zavrel.t@czechglobe.cz
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0849-3503
  2. Marjan Faizi

    Institut für Biologie, Fachinstitut für Theoretische Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Cristina Loureiro

    Department of Applied Physics, Polytechnic University of Valencia, Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Gereon Poschmann

    Molecular Proteomics Laboratory, BMFZ, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2448-0611
  5. Kai Stühler

    Molecular Proteomics Laboratory, BMFZ, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Maria Sinetova

    Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  7. Anna Zorina

    Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  8. Ralf Steuer

    Institut für Biologie, Fachinstitut für Theoretische Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
    For correspondence
    ralf.steuer@hu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2217-1655
  9. Jan Červený

    Laboratory of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5046-3105

Funding

Ministerstvo Školství, Mládeže a Tělovýchovy

  • Tomáš Zavřel
  • Jan Červený

Grantová Agentura České Republiky

  • Tomáš Zavřel
  • Jan Červený

Deutsche Forschungsgemeinschaft

  • Marjan Faizi
  • Gereon Poschmann
  • Kai Stühler

Russian Science Foundation

  • Maria Sinetova
  • Anna Zorina

Bundesministerium für Bildung und Forschung

  • Ralf Steuer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Severin Sasso, Friedrich Schiller University Jena, Germany

Publication history

  1. Received: October 2, 2018
  2. Accepted: February 1, 2019
  3. Accepted Manuscript published: February 4, 2019 (version 1)
  4. Version of Record published: February 26, 2019 (version 2)

Copyright

© 2019, Zavřel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,274
    Page views
  • 431
    Downloads
  • 23
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Stephan Wilmes et al.
    Research Article Updated

    Cytokines elicit pleiotropic and non-redundant activities despite strong overlap in their usage of receptors, JAKs and STATs molecules. We use IL-6 and IL-27 to ask how two cytokines activating the same signaling pathway have different biological roles. We found that IL-27 induces more sustained STAT1 phosphorylation than IL-6, with the two cytokines inducing comparable levels of STAT3 phosphorylation. Mathematical and statistical modeling of IL-6 and IL-27 signaling identified STAT3 binding to GP130, and STAT1 binding to IL-27Rα, as the main dynamical processes contributing to sustained pSTAT1 levels by IL-27. Mutation of Tyr613 on IL-27Rα decreased IL-27-induced STAT1 phosphorylation by 80% but had limited effect on STAT3 phosphorgylation. Strong receptor/STAT coupling by IL-27 initiated a unique gene expression program, which required sustained STAT1 phosphorylation and IRF1 expression and was enriched in classical Interferon Stimulated Genes. Interestingly, the STAT/receptor coupling exhibited by IL-6/IL-27 was altered in patients with systemic lupus erythematosus (SLE). IL-6/IL-27 induced a more potent STAT1 activation in SLE patients than in healthy controls, which correlated with higher STAT1 expression in these patients. Partial inhibition of JAK activation by sub-saturating doses of Tofacitinib specifically lowered the levels of STAT1 activation by IL-6. Our data show that receptor and STATs concentrations critically contribute to shape cytokine responses and generate functional pleiotropy in health and disease.

    1. Computational and Systems Biology
    Michael A Petr et al.
    Research Article Updated

    Aging is associated with distinct phenotypical, physiological, and functional changes, leading to disease and death. The progression of aging-related traits varies widely among individuals, influenced by their environment, lifestyle, and genetics. In this study, we conducted physiologic and functional tests cross-sectionally throughout the entire lifespan of male C57BL/6N mice. In parallel, metabolomics analyses in serum, brain, liver, heart, and skeletal muscle were also performed to identify signatures associated with frailty and age-dependent functional decline. Our findings indicate that declines in gait speed as a function of age and frailty are associated with a dramatic increase in the energetic cost of physical activity and decreases in working capacity. Aging and functional decline prompt organs to rewire their metabolism and substrate selection and toward redox-related pathways, mainly in liver and heart. Collectively, the data provide a framework to further understand and characterize processes of aging at the individual organism and organ levels.