Quantitative insights into the cyanobacterial cell economy

  1. Tomáš Zavřel  Is a corresponding author
  2. Marjan Faizi
  3. Cristina Loureiro
  4. Gereon Poschmann
  5. Kai Stühler
  6. Maria Sinetova
  7. Anna Zorina
  8. Ralf Steuer  Is a corresponding author
  9. Jan Červený
  1. Global Change Research Institute CAS, Czech Republic
  2. Humboldt-Universität zu Berlin, Germany
  3. Polytechnic University of Valencia, Spain
  4. Heinrich-Heine-Universität Düsseldorf, Germany
  5. Russian Academy of Sciences, Russian Federation

Abstract

Phototrophic microorganisms are promising resources for green biotechnology. Compared to heterotrophic microorganisms, however, the cellular economy of phototrophic growth is still insufficiently understood. We provide a quantitative analysis of light-limited, light-saturated, and light-inhibited growth of the cyanobacterium Synechocystis sp. PCC 6803 using a reproducible cultivation setup. We report key physiological parameters, including growth rate, cell size, and photosynthetic activity over a wide range of light intensities. Intracellular proteins were quantified to monitor proteome allocation as a function of growth rate. Among other physiological adaptations, we identify an upregulation of the translational machinery and downregulation of light harvesting components with increasing light intensity and growth rate. The resulting growth laws are discussed in the context of a coarse-grained model of phototrophic growth and available data obtained by a comprehensive literature search. Our insights into quantitative aspects of cyanobacterial adaptations to different growth rates have implications to understand and optimize photosynthetic productivity.

Data availability

Proteomics data have been deposited to the ProteomeXchange Consortium under accession code PXD009626.

The following data sets were generated

Article and author information

Author details

  1. Tomáš Zavřel

    Laboratory of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno, Czech Republic
    For correspondence
    zavrel.t@czechglobe.cz
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0849-3503
  2. Marjan Faizi

    Institut für Biologie, Fachinstitut für Theoretische Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Cristina Loureiro

    Department of Applied Physics, Polytechnic University of Valencia, Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Gereon Poschmann

    Molecular Proteomics Laboratory, BMFZ, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2448-0611
  5. Kai Stühler

    Molecular Proteomics Laboratory, BMFZ, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Maria Sinetova

    Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  7. Anna Zorina

    Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  8. Ralf Steuer

    Institut für Biologie, Fachinstitut für Theoretische Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
    For correspondence
    ralf.steuer@hu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2217-1655
  9. Jan Červený

    Laboratory of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5046-3105

Funding

Ministerstvo Školství, Mládeže a Tělovýchovy

  • Tomáš Zavřel
  • Jan Červený

Grantová Agentura České Republiky

  • Tomáš Zavřel
  • Jan Červený

Deutsche Forschungsgemeinschaft

  • Marjan Faizi
  • Gereon Poschmann
  • Kai Stühler

Russian Science Foundation

  • Maria Sinetova
  • Anna Zorina

Bundesministerium für Bildung und Forschung

  • Ralf Steuer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Zavřel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,981
    views
  • 655
    downloads
  • 94
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tomáš Zavřel
  2. Marjan Faizi
  3. Cristina Loureiro
  4. Gereon Poschmann
  5. Kai Stühler
  6. Maria Sinetova
  7. Anna Zorina
  8. Ralf Steuer
  9. Jan Červený
(2019)
Quantitative insights into the cyanobacterial cell economy
eLife 8:e42508.
https://doi.org/10.7554/eLife.42508

Share this article

https://doi.org/10.7554/eLife.42508

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Cesare V Parise, Marc O Ernst
    Research Article

    Audiovisual information reaches the brain via both sustained and transient input channels, representing signals’ intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals. To account for the present results, we developed a biologically inspired, general-purpose model for multisensory integration, the multisensory correlation detectors, which combines correlated input from unimodal transient channels. Besides accounting for the results of our psychophysical experiments, this model could quantitatively replicate several recent findings in multisensory research, as tested against a large collection of published datasets. In particular, the model could simultaneously account for the perceived timing of audiovisual events, multisensory facilitation in detection tasks, causality judgments, and optimal integration. This study demonstrates that several phenomena in multisensory research that were previously considered unrelated, all stem from the integration of correlated input from unimodal transient channels.

    1. Computational and Systems Biology
    Franck Simon, Maria Colomba Comes ... Herve Isambert
    Tools and Resources

    Live-cell microscopy routinely provides massive amounts of time-lapse images of complex cellular systems under various physiological or therapeutic conditions. However, this wealth of data remains difficult to interpret in terms of causal effects. Here, we describe CausalXtract, a flexible computational pipeline that discovers causal and possibly time-lagged effects from morphodynamic features and cell–cell interactions in live-cell imaging data. CausalXtract methodology combines network-based and information-based frameworks, which is shown to discover causal effects overlooked by classical Granger and Schreiber causality approaches. We showcase the use of CausalXtract to uncover novel causal effects in a tumor-on-chip cellular ecosystem under therapeutically relevant conditions. In particular, we find that cancer-associated fibroblasts directly inhibit cancer cell apoptosis, independently from anticancer treatment. CausalXtract uncovers also multiple antagonistic effects at different time delays. Hence, CausalXtract provides a unique computational tool to interpret live-cell imaging data for a range of fundamental and translational research applications.