Quantitative insights into the cyanobacterial cell economy

  1. Tomáš Zavřel  Is a corresponding author
  2. Marjan Faizi
  3. Cristina Loureiro
  4. Gereon Poschmann
  5. Kai Stühler
  6. Maria Sinetova
  7. Anna Zorina
  8. Ralf Steuer  Is a corresponding author
  9. Jan Červený
  1. Global Change Research Institute CAS, Czech Republic
  2. Humboldt-Universität zu Berlin, Germany
  3. Polytechnic University of Valencia, Spain
  4. Heinrich-Heine-Universität Düsseldorf, Germany
  5. Russian Academy of Sciences, Russian Federation

Abstract

Phototrophic microorganisms are promising resources for green biotechnology. Compared to heterotrophic microorganisms, however, the cellular economy of phototrophic growth is still insufficiently understood. We provide a quantitative analysis of light-limited, light-saturated, and light-inhibited growth of the cyanobacterium Synechocystis sp. PCC 6803 using a reproducible cultivation setup. We report key physiological parameters, including growth rate, cell size, and photosynthetic activity over a wide range of light intensities. Intracellular proteins were quantified to monitor proteome allocation as a function of growth rate. Among other physiological adaptations, we identify an upregulation of the translational machinery and downregulation of light harvesting components with increasing light intensity and growth rate. The resulting growth laws are discussed in the context of a coarse-grained model of phototrophic growth and available data obtained by a comprehensive literature search. Our insights into quantitative aspects of cyanobacterial adaptations to different growth rates have implications to understand and optimize photosynthetic productivity.

Data availability

Proteomics data have been deposited to the ProteomeXchange Consortium under accession code PXD009626.

The following data sets were generated

Article and author information

Author details

  1. Tomáš Zavřel

    Laboratory of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno, Czech Republic
    For correspondence
    zavrel.t@czechglobe.cz
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0849-3503
  2. Marjan Faizi

    Institut für Biologie, Fachinstitut für Theoretische Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Cristina Loureiro

    Department of Applied Physics, Polytechnic University of Valencia, Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Gereon Poschmann

    Molecular Proteomics Laboratory, BMFZ, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2448-0611
  5. Kai Stühler

    Molecular Proteomics Laboratory, BMFZ, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Maria Sinetova

    Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  7. Anna Zorina

    Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  8. Ralf Steuer

    Institut für Biologie, Fachinstitut für Theoretische Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
    For correspondence
    ralf.steuer@hu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2217-1655
  9. Jan Červený

    Laboratory of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5046-3105

Funding

Ministerstvo Školství, Mládeže a Tělovýchovy

  • Tomáš Zavřel
  • Jan Červený

Grantová Agentura České Republiky

  • Tomáš Zavřel
  • Jan Červený

Deutsche Forschungsgemeinschaft

  • Marjan Faizi
  • Gereon Poschmann
  • Kai Stühler

Russian Science Foundation

  • Maria Sinetova
  • Anna Zorina

Bundesministerium für Bildung und Forschung

  • Ralf Steuer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Zavřel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,930
    views
  • 644
    downloads
  • 90
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tomáš Zavřel
  2. Marjan Faizi
  3. Cristina Loureiro
  4. Gereon Poschmann
  5. Kai Stühler
  6. Maria Sinetova
  7. Anna Zorina
  8. Ralf Steuer
  9. Jan Červený
(2019)
Quantitative insights into the cyanobacterial cell economy
eLife 8:e42508.
https://doi.org/10.7554/eLife.42508

Share this article

https://doi.org/10.7554/eLife.42508

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Anna Cattani, Don B Arnold ... Nancy Kopell
    Research Article

    The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (~3–6 Hz), high theta (~6–12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. The model makes use of interneurons commonly found in the cortex and, hence, may apply to a wide variety of associative learning situations.

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark LaBarge
    Research Article

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.