Behavioural and neural signatures of perceptual decision-making are modulated by pupil-linked arousal

  1. Jochem van Kempen  Is a corresponding author
  2. Gerard M Loughnane
  3. Daniel P Newman
  4. Simon P Kelly
  5. Alexander Thiele
  6. Redmond G O'Connell
  7. Mark A Bellgrove
  1. Newcastle University, United Kingdom
  2. Trinity College Dublin, Ireland
  3. Monash University, Australia
  4. University College Dublin, Ireland

Abstract

The timing and accuracy of perceptual decision-making is exquisitely sensitive to fluctuations in arousal. Although extensive research has highlighted the role of various neural processing stages in forming decisions, our understanding of how arousal impacts these processes remains limited. Here we isolated electrophysiological signatures of decision-making alongside signals reflecting target selection, attentional engagement and motor output and examined their modulation as a function of tonic and phasic arousal, indexed by baseline and task-evoked pupil diameter, respectively. Reaction times were shorter on trials with lower tonic, and higher phasic arousal. Additionally, these two pupil measures were predictive of a unique set of EEG signatures that together represent multiple information processing steps of decision-making. Finally, behavioural variability associated with fluctuations in tonic and phasic arousal, indicative of neuromodulators acting on multiple timescales, was mediated by its effects on the EEG markers of attentional engagement, sensory processing and the variability in decision processing.

Data availability

All data have been deposited at https://figshare.com/s/8d6f461834c47180a444, in association with Newman et al (2017).All analysis scripts are publicly available at https://github.com/jochemvankempen/2019_pupil_decisionMaking

Article and author information

Author details

  1. Jochem van Kempen

    Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
    For correspondence
    jochem.van-kempen@ncl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0211-9545
  2. Gerard M Loughnane

    School of Engineering, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1961-5294
  3. Daniel P Newman

    School of Psychological Sciences, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8240-1876
  4. Simon P Kelly

    School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9983-3595
  5. Alexander Thiele

    Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Redmond G O'Connell

    Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6949-2793
  7. Mark A Bellgrove

    Monash Institute for Cognitive and Clinical Neurosciences, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0186-8349

Funding

Wellcome (93104)

  • Jochem van Kempen
  • Alexander Thiele

Australian Research Council (FT130101488)

  • Mark A Bellgrove

Office of Naval Research Global

  • Alexander Thiele
  • Redmond G O'Connell
  • Mark A Bellgrove

Newcastle University, Monash University

  • Alexander Thiele
  • Mark A Bellgrove

Australian Research Council (DP150100986)

  • Mark A Bellgrove

Australian Research Council (DP180102066)

  • Mark A Bellgrove

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The experimental protocal was approved by the human research ethics committee from Monash University and Trinity College Dublin, and informed consent was obtained from all participants before testing. Project number Monash University: 3658, Trinity College: SPREC012014-1

Reviewing Editor

  1. Eran Eldar, UCL, United Kingdom

Publication history

  1. Received: October 3, 2018
  2. Accepted: March 16, 2019
  3. Accepted Manuscript published: March 18, 2019 (version 1)
  4. Version of Record published: April 5, 2019 (version 2)

Copyright

© 2019, van Kempen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,880
    Page views
  • 469
    Downloads
  • 27
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jochem van Kempen
  2. Gerard M Loughnane
  3. Daniel P Newman
  4. Simon P Kelly
  5. Alexander Thiele
  6. Redmond G O'Connell
  7. Mark A Bellgrove
(2019)
Behavioural and neural signatures of perceptual decision-making are modulated by pupil-linked arousal
eLife 8:e42541.
https://doi.org/10.7554/eLife.42541

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Vasileios Dimakopoulos et al.
    Research Article

    The maintenance of items in working memory (WM) relies on a widespread network of cortical areas and hippocampus where synchronization between electrophysiological recordings reflects functional coupling. We investigated the direction of information flow between auditory cortex and hippocampus while participants heard and then mentally replayed strings of letters in WM by activating their phonological loop. We recorded local field potentials from the hippocampus, reconstructed beamforming sources of scalp EEG, and – additionally in four participants – recorded from subdural cortical electrodes. When analyzing Granger causality, the information flow was from auditory cortex to hippocampus with a peak in the [4 8] Hz range while participants heard the letters. This flow was subsequently reversed during maintenance while participants maintained the letters in memory. The functional interaction between hippocampus and the cortex and the reversal of information flow provide a physiological basis for the encoding of memory items and their active replay during maintenance.

    1. Computational and Systems Biology
    2. Neuroscience
    Raymond Doudlah et al.
    Research Advance

    Visually guided behaviors require the brain to transform ambiguous retinal images into object-level spatial representations and implement sensorimotor transformations. These processes are supported by the dorsal 'where' pathway. However, the specific functional contributions of areas along this pathway remain elusive due in part to methodological differences across studies. We previously showed that macaque caudal intraparietal (CIP) area neurons possess robust three-dimensional (3D) visual representations, carry choice- and saccade-related activity, and exhibit experience-dependent sensorimotor associations (Chang et al., 2020b). Here, we used a common experimental design to reveal parallel processing, hierarchical transformations, and the formation of sensorimotor associations along the 'where' pathway by extending the investigation to V3A, a major feedforward input to CIP. Higher-level 3D representations and choice-related activity were more prevalent in CIP than V3A. Both areas contained saccade-related activity that predicted the direction/timing of eye movements. Intriguingly, the time-course of saccade-related activity in CIP aligned with the temporally integrated V3A output. Sensorimotor associations between 3D orientation and saccade direction preferences were stronger in CIP than V3A, and moderated by choice signals in both areas. Together, the results explicate parallel representations, hierarchical transformations, and functional associations of visual and saccade-related signals at a key juncture in the 'where' pathway.