Length regulation of multiple flagella that self-assemble from a shared pool of components

  1. Thomas G Fai
  2. Lishibanya Mohapatra
  3. Prathitha Kar
  4. Jane Kondev
  5. Ariel Amir  Is a corresponding author
  1. Brandeis University, United States
  2. Harvard University, United States
9 figures, 1 table and 1 additional file

Figures

Experimental background.

(a) Electron microscopy images of the biflagellate green algae Chlamydomonas and its flagella captured by Elisa Vannuccini and Pietro Lupetti (University of Siena, Italy) and reproduced from Morga …

IFT in Chlamydomonas with diffusive return of kinesin-2 to the base.

(a) Kinesin-2, dynein, and tubulin combine to form a complex with other IFT components in the basal pool and are injected into the flagellum. The kinesin-2 motors move toward the tip of the …

Figure 3 with 6 supplements
Length dynamics of two flagella assembling from shared pools of building blocks.

(a) Flagellar assembly in Chlamydomonas reinhardtii and modes of coupling between basal proteins pools. (b) Simulations of the severing experiment using different modes of coupling between basal …

Figure 3—video 1
The constant disassembly model with tubulin separate and motors shared does not yield length equalization.
Figure 3—video 2
The constant disassembly model with tubulin shared and motors separate does not yield length equalization.
Figure 3—video 3
The constant disassembly model with both tubulin and motors shared does not yield length control.
Figure 3—video 4
Replenishing protein pools in the constant disassembly model with tubulin separate and motors shared does not yield length control.
Figure 3—video 5
Replenishing protein pools in the constant disassembly model with tubulin shared and motors separate does not yield length control.
Figure 3—video 6
Replenishing protein pools in the constant disassembly model with both tubulin and motors shared does not yield length control.
Figure 4 with 2 supplements
Concentration-dependent disassembly model: simultaneous length control is achieved using shared tubulin and shared depolymerizers.

(a) The depolymerizer moves ballistically to the flagellar tip and diffuses back, (b) The model Equations 20 and 21 captures rapid length equalization, (c) Protein replenishment with timescale τr=5

Figure 4—video 1
The active disassembly model with both tubulin and motors shared but without protein replenishment exhibits rapid length equalization.
Figure 4—video 2
Replenishing protein pools in the active disassembly model with both tubulin and motors shared exhibits rapid length equalization and slow recovery.
The concentration-dependent disassembly model generalizes to arbitrary flagellar number N.

We solve (Equations 25) with N=8 flagella and the larger shared pool T=336μm, d0=0.1μm/min, and d1=120μm2/min; otherwise all parameters are as in Table 1.

Appendix 3—figure 1
Concentration-dependent disassembly model: simulations of severing experiment with different modes of coupling between basal pools (and no replenishment of protein levels).

We conclude that biomolecule pools are fully shared after ruling out all models that disagree with the rapid length equalization that occurs in severing experiments. (i) In the case of separate …

Appendix 3—figure 2
Concentration-dependent disassembly model Equation 68 and 69 with tubulin in excess yields rapid length equalization consistent with severing experiments, here with replenishment timescale τr=5min.
Appendix 3—figure 3
Simultaneous length control is achieved by different versions of the concentration-dependent disassembly model.

(a) Results from agent-based simulations with different populations of depolymerizer and rate-limiting IFT protein, using capacity K=2, (inset) Concentrations along the flagellum of diffusing IFT …

Author response image 1

Tables

Table 1
Parameter values and definitions.
SymbolDefinitionValueUnitsReferences
Parameters
LssSteady-state length10–12µmMarshall and Rosenbaum, 2001; Rosenbaum et al., 1969
T/NTubulin pool per flagellum38–47µmMarshall et al., 2005
dDisassembly speed0.5µm/minMarshall and Rosenbaum, 2001; Ludington et al., 2012
vIFT speed2.5–3µm/sKozminski et al., 1993; Buisson et al., 2013
DDiffusion coefficient1.7µm2/sChien et al., 2017
γkonM/NAssembly rate per tubulin2.3 × 10-2 –3.6 × 10-2min−1Fit
konInjection rate constant0.8–4min−1Fit
γPrefactor in Equation 52.5 × 10-4Estimate (Appendix 2)
Variables
NNumber of flagella
TfFree tubulinµm
MTotal motors
MfFree motors
MbBallistic motors
MdDiffusing motors
JFluxmin−1
cd(x)Motor concentrationµm−1
cd¯Average concentrationµm−1

Additional files

Download links