Length regulation of multiple flagella that self-assemble from a shared pool of components

  1. Thomas G Fai
  2. Lishibanya Mohapatra
  3. Prathitha Kar
  4. Jane Kondev
  5. Ariel Amir  Is a corresponding author
  1. Brandeis University, United States
  2. Harvard University, United States

Abstract

The single-celled green algae Chlamydomonas reinhardtii with its two flagella - microtubule-based structures of equal and constant lengths - is the canonical model organism for studying size control of organelles. Experiments have identified motor-driven transport of tubulin to the flagella tips as a key component of their length control. Here we consider a class of models whose key assumption is that proteins responsible for the intraflagellar transport (IFT) of tubulin are present in limiting amounts. We show that the limiting-pool assumption is insufficient to describe the results of severing experiments, in which a flagellum is regenerated after it has been severed. Next, we consider an extension of the limiting-pool model that incorporates proteins that depolymerize microtubules. We show that this 'active disassembly' model of flagellar length control explains in quantitative detail the results of severing experiments and use it to make predictions that can be tested in experiments.

Data availability

All data analyzed during this study is contained in the published studies cited in the references. Source code of the simulations used in our work can be found here: https://github.com/pkar96/Agent-based-simulation.

Article and author information

Author details

  1. Thomas G Fai

    Department of Mathematics, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0383-5217
  2. Lishibanya Mohapatra

    Department of Physics, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Prathitha Kar

    Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jane Kondev

    Department of Physics, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ariel Amir

    Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
    For correspondence
    arielamir@seas.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2611-0139

Funding

National Science Foundation (CAREER 1752024)

  • Ariel Amir

National Science Foundation (DMS-1502851)

  • Thomas G Fai

National Science Foundation (DMR-1610737)

  • Jane Kondev

National Science Foundation (MRSEC-1420382)

  • Jane Kondev

Alfred P. Sloan Foundation

  • Ariel Amir

Kavli Foundation

  • Ariel Amir

Simons Foundation

  • Jane Kondev

Simons Foundation

  • Lishibanya Mohapatra

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Fai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,458
    views
  • 360
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thomas G Fai
  2. Lishibanya Mohapatra
  3. Prathitha Kar
  4. Jane Kondev
  5. Ariel Amir
(2019)
Length regulation of multiple flagella that self-assemble from a shared pool of components
eLife 8:e42599.
https://doi.org/10.7554/eLife.42599

Share this article

https://doi.org/10.7554/eLife.42599

Further reading

    1. Physics of Living Systems
    Ning Liu, Wenan Qiang ... Huanyu Qiao
    Research Article

    Chromosome structure is complex, and many aspects of chromosome organization are still not understood. Measuring the stiffness of chromosomes offers valuable insight into their structural properties. In this study, we analyzed the stiffness of chromosomes from metaphase I (MI) and metaphase II (MII) oocytes. Our results revealed a tenfold increase in stiffness (Young’s modulus) of MI chromosomes compared to somatic chromosomes. Furthermore, the stiffness of MII chromosomes was found to be lower than that of MI chromosomes. We examined the role of meiosis-specific cohesin complexes in regulating chromosome stiffness. Surprisingly, the stiffness of chromosomes from three meiosis-specific cohesin mutants did not significantly differ from that of wild-type chromosomes, indicating that these cohesins may not be primary determinants of chromosome stiffness. Additionally, our findings revealed an age-related increase of chromosome stiffness for MI oocytes. Since aging is associated with elevated levels of DNA damage, we investigated the impact of etoposide-induced DNA damage on chromosome stiffness and found that it led to a reduction in stiffness in MI oocytes. Overall, our study underscores the dynamic and cyclical nature of chromosome stiffness, modulated by both the cell cycle and age-related factors.

    1. Cancer Biology
    2. Physics of Living Systems
    Joseph Ackermann, Chiara Bernard ... Martine D Ben Amar
    Research Article

    The tumor stroma consists mainly of extracellular matrix, fibroblasts, immune cells, and vasculature. Its structure and functions are altered during malignancy: tumor cells transform fibroblasts into cancer-associated fibroblasts, which exhibit immunosuppressive activities on which growth and metastasis depend. These include exclusion of immune cells from the tumor nest, cancer progression, and inhibition of T-cell-based immunotherapy. To understand these complex interactions, we measure the density of different cell types in the stroma using immunohistochemistry techniques on tumor samples from lung cancer patients. We incorporate these data into a minimal dynamical system, explore the variety of outcomes, and finally establish a spatio-temporal model that explains the cell distribution. We reproduce that cancer-associated fibroblasts act as a barrier to tumor expansion, but also reduce the efficiency of the immune response. Our conclusion is that the final outcome depends on the parameter values for each patient and leads to either tumor invasion, persistence, or eradication as a result of the interplay between cancer cell growth, T-cell cytotoxicity, and fibroblast activity. However, despite the existence of a wide range of scenarios, distinct trajectories, and patterns allow quantitative predictions that may help in the selection of new therapies and personalized protocols.