1. Neuroscience
  2. Structural Biology and Molecular Biophysics
Download icon

Cryo-EM structures of the DCPIB-inhibited volume-regulated anion channel LRRC8A in lipid nanodiscs

  1. David M Kern
  2. SeCheol Oh
  3. Richard K Hite  Is a corresponding author
  4. Stephen Graf Brohawn  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Memorial Sloan Kettering Cancer Center, United States
Research Article
  • Cited 24
  • Views 3,600
  • Annotations
Cite this article as: eLife 2019;8:e42636 doi: 10.7554/eLife.42636

Abstract

Hypoosmotic conditions activate volume-regulated anion channels in vertebrate cells. These channels are formed by leucine-rich repeat-containing protein 8 (LRRC8) family members and contain LRRC8A in homo- or hetero-hexameric assemblies. Here we present single-particle cryo-electron microscopy structures of Mus musculus LRRC8A in complex with the inhibitor DCPIB reconstituted in lipid nanodiscs. DCPIB plugs the channel like a cork in a bottle - binding in the extracellular selectivity filter and sterically occluding ion conduction. Constricted and expanded structures reveal coupled dilation of cytoplasmic LRRs and the channel pore, suggesting a mechanism for channel gating by internal stimuli. Conformational and symmetry differences between LRRC8A structures determined in detergent micelles and lipid bilayers related to reorganization of intersubunit lipid binding sites demonstrate a critical role for the membrane in determining channel structure. These results provide insight into LRRC8 gating and inhibition and the role of lipids in the structure of an ionic-strength sensing ion channel.

Article and author information

Author details

  1. David M Kern

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. SeCheol Oh

    Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1685-5922
  3. Richard K Hite

    Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    For correspondence
    hiter@mskcc.org
    Competing interests
    The authors declare that no competing interests exist.
  4. Stephen Graf Brohawn

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    brohawn@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6768-3406

Funding

New York Stem Cell Foundation (NYSCF-R-N145)

  • Stephen Graf Brohawn

National Institute of General Medical Sciences (DP2GM123496-01)

  • Stephen Graf Brohawn

Klingenstein Third Generation Foundation (na)

  • Stephen Graf Brohawn

McKnight Endowment Fund for Neuroscience (na)

  • Stephen Graf Brohawn

National Cancer Institute (PO CA008748)

  • Richard K Hite

Searle Scholars Program (na)

  • Richard K Hite

Robertson Foundation (na)

  • Richard K Hite

National Institute of General Medical Sciences (F32GM128263)

  • David M Kern

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kenton Jon Swartz, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States

Publication history

  1. Received: October 7, 2018
  2. Accepted: February 14, 2019
  3. Accepted Manuscript published: February 18, 2019 (version 1)
  4. Version of Record published: February 28, 2019 (version 2)
  5. Version of Record updated: March 16, 2020 (version 3)

Copyright

© 2019, Kern et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,600
    Page views
  • 592
    Downloads
  • 24
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Yanying Wu et al.
    Research Article

    Dietary magnesium (Mg2+) supplementation can enhance memory in young and aged rats. Memory-enhancing capacity was largely ascribed to increases in hippocampal synaptic density and elevated expression of the NR2B subunit of the NMDA-type glutamate receptor. Here we show that Mg2+ feeding also enhances long-term memory in Drosophila. Normal and Mg2+ enhanced fly memory appears independent of NMDA receptors in the mushroom body and instead requires expression of a conserved CNNM-type Mg2+-efflux transporter encoded by the unextended (uex) gene. UEX contains a putative cyclic nucleotide-binding homology domain and its mutation separates a vital role for uex from a function in memory. Moreover, UEX localization in mushroom body Kenyon Cells is altered in memory defective flies harboring mutations in cAMP-related genes. Functional imaging suggests that UEX-dependent efflux is required for slow rhythmic maintenance of Kenyon Cell Mg2+. We propose that regulated neuronal Mg2+ efflux is critical for normal and Mg2+ enhanced memory.

    1. Neuroscience
    Caitlin R Bowman et al.
    Research Article

    There is a long-standing debate about whether categories are represented by individual category members (exemplars) or by the central tendency abstracted from individual members (prototypes). Neuroimaging studies have shown neural evidence for either exemplar representations or prototype representations, but not both. Presently, we asked whether it is possible for multiple types of category representations to exist within a single task. We designed a categorization task to promote both exemplar and prototype representations and tracked their formation across learning. We found only prototype correlates during the final test. However, interim tests interspersed throughout learning showed prototype and exemplar representations across distinct brain regions that aligned with previous studies: prototypes in ventromedial prefrontal cortex and anterior hippocampus and exemplars in inferior frontal gyrus and lateral parietal cortex. These findings indicate that, under the right circumstances, individuals may form representations at multiple levels of specificity, potentially facilitating a broad range of future decisions.