Cryo-EM structures of the DCPIB-inhibited volume-regulated anion channel LRRC8A in lipid nanodiscs
Abstract
Hypoosmotic conditions activate volume-regulated anion channels in vertebrate cells. These channels are formed by leucine-rich repeat-containing protein 8 (LRRC8) family members and contain LRRC8A in homo- or hetero-hexameric assemblies. Here we present single-particle cryo-electron microscopy structures of Mus musculus LRRC8A in complex with the inhibitor DCPIB reconstituted in lipid nanodiscs. DCPIB plugs the channel like a cork in a bottle - binding in the extracellular selectivity filter and sterically occluding ion conduction. Constricted and expanded structures reveal coupled dilation of cytoplasmic LRRs and the channel pore, suggesting a mechanism for channel gating by internal stimuli. Conformational and symmetry differences between LRRC8A structures determined in detergent micelles and lipid bilayers related to reorganization of intersubunit lipid binding sites demonstrate a critical role for the membrane in determining channel structure. These results provide insight into LRRC8 gating and inhibition and the role of lipids in the structure of an ionic-strength sensing ion channel.
Data availability
Final maps of LRRC8A-DCPIB in MSPE3D1 nanodiscs have been deposited to the Electron Microscopy Data Bank under accession codes EMDB-0562 (masked constricted state), and EMDB-0563 (masked expanded state) and atomic coordinates have been deposited in the PDB under IDs 6NZW (constricted state) and 6NZZ (expanded state). The original micrograph movies have been deposited to EMPIAR under accession codes EMPIAR-10366 and EMPIAR-10367. The map of apo-LRRC8A in MSP2N2 nanodiscs in a constricted state has been deposited with EMDB accession code EMDB-0564 and coordinates deposited in the PDB with ID 6O00.
-
Final map of LRRC8A-DCPIB in MSPE3D1 nanodiscs (masked constricted state)Electron Microscopy Data Bank, EMDB-0562.
-
Final map of LRRC8A-DCPIB in MSPE3D1 nanodiscs (masked expanded state)Electron Microscopy Data Bank, EMDB-0563.
-
Atomic coordinates (LRRC8A-DCPIB in MSPE3D1 nanodiscs expanded state)Protein Data Bank, 6NZZ.
-
Map of apo-LRRC8A in MSP2N2 nanodiscs in a constricted stateElectron Microscopy Data Bank, EMDB-0564.
-
Coordinates of apo-LRRC8A in MSP2N2 nanodiscs in a constricted stateProtein Data Bank, 6O00.
-
Original micrograph moviesElectron Microscopy Public Image Archive, EMPIAR-10366.
-
Original micrograph moviesElectron Microscopy Public Image Archive, EMPIAR-10367.
Article and author information
Author details
Funding
New York Stem Cell Foundation (NYSCF-R-N145)
- Stephen Graf Brohawn
National Institute of General Medical Sciences (DP2GM123496-01)
- Stephen Graf Brohawn
Klingenstein Third Generation Foundation (na)
- Stephen Graf Brohawn
McKnight Endowment Fund for Neuroscience (na)
- Stephen Graf Brohawn
National Cancer Institute (PO CA008748)
- Richard K Hite
Searle Scholars Program (na)
- Richard K Hite
Robertson Foundation (na)
- Richard K Hite
National Institute of General Medical Sciences (F32GM128263)
- David M Kern
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Kenton Jon Swartz, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States
Version history
- Received: October 7, 2018
- Accepted: February 14, 2019
- Accepted Manuscript published: February 18, 2019 (version 1)
- Version of Record published: February 28, 2019 (version 2)
- Version of Record updated: March 16, 2020 (version 3)
Copyright
© 2019, Kern et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,256
- Page views
-
- 805
- Downloads
-
- 68
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
- Structural Biology and Molecular Biophysics
Acid-sensing ion channels (ASICs) are trimeric proton-gated sodium channels. Recent work has shown that these channels play a role in necroptosis following prolonged acidic exposure like occurs in stroke. The C-terminus of ASIC1a is thought to mediate necroptotic cell death through interaction with receptor interacting serine threonine kinase 1 (RIPK1). This interaction is hypothesized to be inhibited at rest via an interaction between the C- and N-termini which blocks the RIPK1 binding site. Here, we use two transition metal ion FRET methods to investigate the conformational dynamics of the termini at neutral and acidic pH. We do not find evidence that the termini are close enough to be bound while the channel is at rest and find that the termini may modestly move closer together during acidification. At rest, the N-terminus adopts a conformation parallel to the membrane about 10 Å away. The distal end of the C-terminus may also spend time close to the membrane at rest. After acidification, the proximal portion of the N-terminus moves marginally closer to the membrane whereas the distal portion of the C-terminus swings away from the membrane. Together these data suggest that a new hypothesis for RIPK1 binding during stroke is needed.
-
- Neuroscience
Decisions under uncertainty are often biased by the history of preceding sensory input, behavioral choices, or received outcomes. Behavioral studies of perceptual decisions suggest that such history-dependent biases affect the accumulation of evidence and can be adapted to the correlation structure of the sensory environment. Here, we systematically varied this correlation structure while human participants performed a canonical perceptual choice task. We tracked the trial-by-trial variations of history biases via behavioral modeling and of a neural signature of decision formation via magnetoencephalography (MEG). The history bias was flexibly adapted to the environment and exerted a selective effect on the build-up (not baseline level) of action-selective motor cortical activity during decision formation. This effect added to the impact of the current stimulus. We conclude that the build-up of action plans in human motor cortical circuits is shaped by dynamic prior expectations that result from an adaptive interaction with the environment.