Abstract

Combining clonal analysis with a computational agent based model, we investigate how tissue-specific stem cells for neural retina (NR) and retinal pigmented epithelium (RPE) of the teleost medaka (Oryzias latipes) coordinate their growth rates. NR cell division timing is less variable, consistent with an upstream role as growth inducer. RPE cells divide with greater variability, consistent with a downstream role responding to inductive signals. Strikingly, the arrangement of the retinal ciliary marginal zone niche results in a spatially biased random lineage loss, where stem- and progenitor cell domains emerge spontaneously. Further, our data indicate that NR cells orient division axes to regulate organ shape and retinal topology. We highlight an unappreciated mechanism for growth coordination, where one tissue integrates cues to synchronize growth of nearby tissues. This strategy may enable evolution to modulate cell proliferation parameters in one tissue to adapt whole-organ morphogenesis in a complex vertebrate organ.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 3; 4; 5; 6.Model description and list of parameters are in the appendix.EPISIM Modeller project archive and EPISIM Simulator executable as well asinstructions for use have been provided as supplementary files.The relevant parts of the source code containing the implementation of the model as described in the appendix have been provided as supplementary files.The full source code of EPISIM Simulator is available at: https://gitlab.com/EPISIM/EPISIM-Simulator

Article and author information

Author details

  1. Erika Tsingos

    Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    For correspondence
    Erika.tsingos@cos.uni-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7267-160X
  2. Burkhard Höckendorf

    Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Thomas Sütterlin

    National Center for Tumor Diseases, Hamamatsu TIGA Center, Bioquant, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Stephan Kirchmaier

    Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Niels Grabe

    National Center for Tumor Diseases, Hamamatsu TIGA Center, Bioquant, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Lazaro Centanin

    Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3889-4524
  7. Joachim Wittbrodt

    Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    For correspondence
    jochen.wittbrodt@cos.uni-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8550-7377

Funding

7th framework program of the European Union (ERC advanced grant GA 294354-ManISteC)

  • Joachim Wittbrodt

Research Training Group Mathematical Modelling for the Quantitative Biosciences

  • Niels Grabe

Heidelberg Biosciences International Graduate School HBIGS (MSc/PhD fellowship)

  • Erika Tsingos

Joachim Herz Stiftung (Add-On Fellowship for Interdisciplinary Science)

  • Erika Tsingos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Raymond E Goldstein, University of Cambridge, United Kingdom

Ethics

Animal experimentation: All experimental procedures were performed according to the guidelines of the German animal welfare law and approved by the local government (Tierschutzgesetz {section sign}11, Abs. 1, Nr. 1, husbandry permit number AZ 35-9185.64/BH; line generation permit number AZ 35-9185.81/G-145-15).

Version history

  1. Received: October 7, 2018
  2. Accepted: March 13, 2019
  3. Accepted Manuscript published: March 26, 2019 (version 1)
  4. Version of Record published: April 26, 2019 (version 2)

Copyright

© 2019, Tsingos et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,074
    views
  • 336
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erika Tsingos
  2. Burkhard Höckendorf
  3. Thomas Sütterlin
  4. Stephan Kirchmaier
  5. Niels Grabe
  6. Lazaro Centanin
  7. Joachim Wittbrodt
(2019)
Retinal stem cells modulate proliferative parameters to coordinate post-embryonic morphogenesis in the eye of fish
eLife 8:e42646.
https://doi.org/10.7554/eLife.42646

Share this article

https://doi.org/10.7554/eLife.42646

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Ryan T Bell, Harutyun Sahakyan ... Eugene V Koonin
    Research Article

    A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.

    1. Computational and Systems Biology
    Skander Kazdaghli, Iordanis Kerenidis ... Philip Teare
    Research Article

    Imputing data is a critical issue for machine learning practitioners, including in the life sciences domain, where missing clinical data is a typical situation and the reliability of the imputation is of great importance. Currently, there is no canonical approach for imputation of clinical data and widely used algorithms introduce variance in the downstream classification. Here we propose novel imputation methods based on determinantal point processes (DPP) that enhance popular techniques such as the multivariate imputation by chained equations and MissForest. Their advantages are twofold: improving the quality of the imputed data demonstrated by increased accuracy of the downstream classification and providing deterministic and reliable imputations that remove the variance from the classification results. We experimentally demonstrate the advantages of our methods by performing extensive imputations on synthetic and real clinical data. We also perform quantum hardware experiments by applying the quantum circuits for DPP sampling since such quantum algorithms provide a computational advantage with respect to classical ones. We demonstrate competitive results with up to 10 qubits for small-scale imputation tasks on a state-of-the-art IBM quantum processor. Our classical and quantum methods improve the effectiveness and robustness of clinical data prediction modeling by providing better and more reliable data imputations. These improvements can add significant value in settings demanding high precision, such as in pharmaceutical drug trials where our approach can provide higher confidence in the predictions made.